15.083J/6.859J Integer Optimization

Lecture 4: Methods to enhance formulations II

## 1 Outline

- Independence set systems and Matroids
- Strength of valid inequalities
- Nonlinear formulations


## 2 Independence set systems

### 2.1 Definition

- $N$ finite set, $\mathcal{I}$ collection of subsets of $N$.
- $(N, \mathcal{I})$ is an independence system if:
(a) $\emptyset \in \mathcal{I}$;
(b) if $A \subseteq B$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$.
- Combinatorial structures that exhibit hereditary properties


### 2.2 Examples

- Node disjoint paths; $G=(V, E), \mathcal{I}_{1}$ collection of node disjoint paths in $G$. $\left(E, \mathcal{I}_{1}\right)$ is IS. Why?
- Acyclic subgraphs. $\mathcal{I}_{2}$ collection of acyclic subgraphs (forests) in $G=(V, E)$. $\left(E, \mathcal{I}_{2}\right)$ is IS. Why?
- Linear independence; $\boldsymbol{A}$ matrix; $N$ index set of columns of $\boldsymbol{A} ; \mathcal{I}_{3}$ collection of linearly independent columns of $\boldsymbol{A} .\left(N, \mathcal{I}_{3}\right)$ is IS. Why?
- Feasible solutions to packing problems. $S=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \boldsymbol{A x} \leq \boldsymbol{b}\right\}, \boldsymbol{A} \geq \mathbf{0}$, $N=\{1,2, \ldots, n\}$. For $\boldsymbol{x} \in S, A(\boldsymbol{x})=\left\{i \mid x_{i}=1\right\}$. $\mathcal{I}_{4}=\cup \boldsymbol{x} \in S A(\boldsymbol{x})$. $\left(N, \mathcal{I}_{4}\right)$ is IS. Why?


### 2.3 Rank

- $(N, \mathcal{I})$ independence system
- An independent set of maximal cardinality contained in $T \subseteq N$ is called a basis of $T$. The maximum cardinality of a basis of $T$, denoted by $r(T)$, is called the rank of $T$.
- $S \subseteq T ;|A|=r(T)$. $A \cap S$ and $A \cap(T \backslash S)$ are independent sets contained in $S$ and $T \backslash S$
- $r(S)+r(T \backslash S) \geq|A \cap S|+|A \cap(T \backslash S)|=|A|=r(T)$.


### 2.4 Matroids

- $(N, \mathcal{I})$ is a matroid if: Every maximal independent set contained in $F$ has the same cardinality $r(F)$ for all $F \subset N$.
- $\left(E, \mathcal{I}_{1}\right)$ (node disjoint paths in $G$ ). Is $\left(E, \mathcal{I}_{1}\right)$ a matroid?
- $F=\{(1,2),(2,3),(2,4),(4,5),(4,6)\}$. Maximal independent sets in $F:\{(1,2)$, $(2,4),(4,5)\}$ and $\{(1,2),(2,3),(4,5),(4,6)\}$.
- Is $\left(E, \mathcal{I}_{2}\right)$ of forests a matroid?
- $\left(N, \mathcal{I}_{3}\right)$ of linearly independent columns of $\boldsymbol{A}$ is a matroid. $T \subset N$ index of columns of $\boldsymbol{A}, \boldsymbol{A}_{T}=\left[\boldsymbol{A}_{j}\right]_{j \in T} . r(T)=\operatorname{rank}\left(\boldsymbol{A}_{T}\right)$.
- Is $\left(N, \mathcal{I}_{4}\right)$ of feasible solutions to packing problems a matroid?


### 2.5 Valid Inequalities

- $C \subseteq N$ a circuit in $(N, \mathcal{I})$.

$$
\begin{aligned}
\text { maximize } & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { subject to } & \sum_{i \in C} x_{i} \leq|C|-1 \text { for all } C \in \mathcal{C} \\
& \boldsymbol{x} \in\{0,1\}^{n} .
\end{aligned}
$$

- Rank inequality $\sum_{i \in T} x_{i} \leq r(T)$
- BW contains conditions for rank inequalities to be facet defining. For matroids, rank inequalities completely characterize convex hull.


## 3 Strength of valid inequalities

- $S$ set of integer feasible vectors.
- $P_{i}=\left\{\boldsymbol{x} \in \Re_{+}^{n} \mid \boldsymbol{A}_{i} \boldsymbol{x} \geq \boldsymbol{b}_{i}\right\}, i=1,2, \boldsymbol{A}_{i}, \boldsymbol{b}_{i} \geq \mathbf{0}$; covering type polyhedra.
- The strength of $P_{1}$ with respect to $P_{2}$ denoted by $t\left(P_{1}, P_{2}\right)$ is the minimum value of $\alpha>0$ such that $\alpha P_{1} \subset P_{2}$.
- $P_{1}=\{x \in \mathcal{R} \mid x \geq 0\}, P_{2}=\{x \in \mathcal{R} \mid x \geq 1\}$. Strength ?


### 3.1 Characterization

### 3.1.1 Theorem

- $\alpha P_{1} \subset P_{2}$ if and only if for all $\boldsymbol{c} \geq \mathbf{0}, Z_{2} \leq \alpha Z_{1}$, where $Z_{i}=\min \boldsymbol{c}^{\prime} \boldsymbol{x}: \boldsymbol{x} \in P_{i}$.
- Proof If $\alpha P_{1} \subset P_{2}$, then $Z_{2} \leq \alpha Z_{1}$ for all $\boldsymbol{c} \geq \mathbf{0}$.
- For converse, assume $Z_{2} \leq \alpha Z_{1}$, for all $\boldsymbol{c} \geq \mathbf{0}$, and there exists $\boldsymbol{x}_{0} \in \alpha P_{1}$, but $x_{0} \notin P_{2}$.
- By the separating hyperplane theorem, there exists $\boldsymbol{c}: \boldsymbol{c}^{\prime} \boldsymbol{x}_{0}<\boldsymbol{c}^{\prime} \boldsymbol{x}$ for all $\boldsymbol{x} \in P_{2}$, i.e., $\boldsymbol{c}^{\prime} x_{0}<Z_{2}$.
- $\boldsymbol{x}_{0} \in \alpha P_{1}, \boldsymbol{x}_{0}=\alpha \boldsymbol{y}_{0}, \boldsymbol{y}_{0} \in P_{1} . Z_{1} \leq \boldsymbol{c}^{\prime} \boldsymbol{y}_{0}$, i.e., $\alpha Z_{1} \leq \boldsymbol{c}^{\prime} \boldsymbol{x}_{0}$, and thus $\alpha Z_{1}<Z_{2}$. Contradiction.
- $t\left(P_{1}, P_{2}\right)=\sup _{\boldsymbol{c} \geq \mathbf{0}} \frac{Z_{2}}{Z_{1}}$.


### 3.1.2 Computation

$P_{i}=\left\{\boldsymbol{x} \in \Re_{+}^{n} \mid \boldsymbol{a}_{i}^{\prime} \boldsymbol{x} \geq b_{i}, i=1, \ldots, m\right\}$, and $\boldsymbol{a}_{i} \geq \mathbf{0}, b_{i} \geq 0$ for all $i=1, \ldots, m$. Then,

$$
t\left(P_{1}, P_{2}\right)=\max _{i=1, \ldots, m} \frac{b_{i}}{d_{i}},
$$

where $d_{i}=\min \boldsymbol{a}_{i}^{\prime} \boldsymbol{x}: \boldsymbol{x} \in P_{1}$. (If $d_{i}=0$, then $t\left(P_{1}, P_{2}\right)$ is defined to be $+\infty$.

### 3.2 Strength of an inequality

- The strength of $\boldsymbol{f}^{\prime} \boldsymbol{x} \geq g, \boldsymbol{f} \geq \mathbf{0}, g>0$ with respect to $P=\left\{\boldsymbol{x} \in \Re_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$ of covering type is defined as $g / d$, where $d=\min \boldsymbol{x} \in P \boldsymbol{f}^{\prime} \boldsymbol{x}$.
- By strong duality,

$$
\begin{aligned}
d=\max & b^{\prime} \boldsymbol{p} \\
\text { s.t. } & \boldsymbol{A}^{\prime} \boldsymbol{p} \leq \boldsymbol{f} \\
& \boldsymbol{p} \geq \mathbf{0}
\end{aligned}
$$

- $\overline{\boldsymbol{p}}$ feasible dual solution. $\boldsymbol{b}^{\prime} \overline{\boldsymbol{p}} \leq d$. Then, the strength of inequality $\boldsymbol{f}^{\prime} \boldsymbol{x} \geq g$ with respect to $P$ is at most $g /\left(\boldsymbol{b}^{\prime} \overline{\boldsymbol{p}}\right)$.


## 4 Nonlinear formulations

$$
\begin{aligned}
Z_{I P}=\min & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} \boldsymbol{A}_{j} x_{j}=\boldsymbol{b} \\
& x_{j} \in\{0,1\} .
\end{aligned}
$$

### 4.1 SDP relaxation

- Multiply each constraint by $x_{i}: \sum_{j=1}^{n} \boldsymbol{A}_{j} x_{j} x_{i}=\boldsymbol{b} x_{i}$.
- Introduce $z_{i j}=x_{i} x_{j}$.

$$
\begin{array}{ll}
z_{i i}=x_{i}^{2}=x_{i} & \forall i=1, \ldots, n \\
x_{i} x_{j} \geq 0 \Longleftrightarrow z_{i j} \geq 0 & \forall i, j ; i \neq j \\
x_{i}\left(1-x_{j}\right) \geq 0 \Longleftrightarrow z_{i j} \leq z_{i i} & \forall i, j, i \neq j \\
\left(1-x_{i}\right)\left(1-x_{j}\right) \geq 0 \Longleftrightarrow z_{i i}+z_{j j}-z_{i j} \leq 1 & \forall i, j, i \neq j
\end{array}
$$

- Matrix $\mathbf{Z}=\boldsymbol{x} \boldsymbol{x}^{\prime}$ is positive semidefinite, $\mathbf{Z} \succeq \mathbf{0}$, i.e., for $\boldsymbol{u} \in \Re^{n}$,

$$
u^{\prime} \mathbf{Z} u=\left\|\boldsymbol{u}^{\prime} \boldsymbol{x}\right\|^{2} \geq 0
$$

### 4.2 SDP relaxation

$$
\begin{array}{rlr}
Z_{S D}=\min & \sum_{j=1}^{n} c_{j} z_{j j} \\
\text { s.t. } & \sum_{j=1}^{n} \boldsymbol{A}_{j} z_{i j}-\boldsymbol{b} z_{i i}=\mathbf{0}, & i=1, \ldots, n \text {, } \\
& \sum_{j=1}^{n} \boldsymbol{A}_{j} z_{j j}=\boldsymbol{b}, & \\
& 0 \leq z_{i j} \leq z_{i i}, & i, j=1, \ldots, n, i \neq j, \\
& 0 \leq z_{i j} \leq z_{j j}, & i, j=1, \ldots, n, i \neq j, \\
& 0 \leq z_{i i} \leq 1, & \\
& z_{i i}+z_{j j}-z_{i j} \leq 1, \ldots, n, i \neq j, \ldots, n, \\
\mathbf{Z} \succeq \mathbf{0 .} & \\
& Z_{L P} \leq Z_{S D} \leq Z_{I P} . & \text { Why? }
\end{array}
$$

### 4.3 Stable set

$$
\begin{array}{rlr}
Z_{I P}= & \max \sum_{i=1}^{n} w_{i} x_{i} & \\
& \text { s.t. } \quad x_{i}+x_{j} \leq 1, \quad & \forall\{i, j\} \in E, \\
Z_{S D}=\max & \sum_{i=1}^{n} w_{i} z_{i i} & \\
\text { s.t. } \quad z_{i j}=0, & & \\
& z_{i i}+z_{j j} \leq 1, & \\
& z_{i k}+z_{k j} \leq z_{k k}, & \forall\{i, j\} \in E, \\
& z_{i i}+z_{j j}+z_{k k} \leq 1+z_{i k}+z_{j k}, & \forall\{i, j\} \in E, \\
& \mathbf{Z} \succeq \mathbf{0} . &
\end{array}
$$

### 4.4 Max-Cut

$$
\begin{aligned}
\max & \sum_{\{i, j\} \in E} w_{i j}\left(x_{i}+x_{j}-2 x_{i} x_{j}\right) \\
\text { s.t. } & x_{s}=1, \quad x_{t}=0, \\
& x_{i} \in\{0,1\}, \\
Z_{S D}= & \max \quad \sum_{\{i, j\} \in E} w_{i j}\left(z_{i i}+z_{j j}-2 z_{i j}\right) \\
& \text { s.t. } \quad z_{s s}=1, \quad z_{t t}=0, \quad z_{s t}=0 \\
& \mathbf{Z} \succeq \mathbf{0} .
\end{aligned}
$$

Also

$$
0 \leq z_{i i} \leq 1, z_{i j} \leq z_{i i}, z_{i j} \leq z_{j j}, z_{i i}+z_{j j}-z_{i j} \leq 1
$$

### 4.5 Scheduling

- Jobs $J=\{1, \ldots, n\}$ and $m$ machines.
- $p_{i j}$ processing time of job $j$ on machine $i$.
- Completion time $C_{j}$. Objective: assign jobs to machines, and schedule each machine to minimize $\sum_{j \in J} w_{j} C_{j}$.
- If jobs $j$ and $k$ are assigned to machine $i$, then job $j$ is scheduled before job $k$ on machine $i$, denoted by $j \prec_{i} k$ if and only if

$$
\frac{w_{k}}{p_{i k}}>\frac{w_{j}}{p_{i j}} .
$$

### 4.5.1 Formulation

- $x_{i j}$ is one, if job $j$ is assigned to machine $i$, and zero, otherwise.
- $C_{j}=\sum_{i=1}^{m} x_{i j}\left(p_{i j}+\sum_{k \prec_{i} j} x_{i k} p_{i k}\right)$,

$$
\begin{aligned}
\operatorname{minimize} & \sum_{j \in J} w_{j} \sum_{i=1}^{m} x_{i j}\left(p_{i j}+\sum_{k \prec_{i} j} x_{i k} p_{i k}\right) \\
\text { subject to } & \sum_{i=1}^{m} x_{i j}=1, \quad \forall j \in J \\
& x_{i j} \in\{0,1\} .
\end{aligned}
$$

- $c_{i j}=w_{j} p_{i j}$,

$$
d_{(i j),(h k)}= \begin{cases}0, & \text { if } i \neq h \text { or } j=k, \\ w_{j} p_{i k} & \text { if } i=h \text { and } k \prec_{i} j, \\ w_{k} p_{i j} & \text { if } i=h \text { and } j \prec_{i} k,\end{cases}
$$

- $x_{i j}^{2}=x_{i j}$ :

$$
\begin{aligned}
Z_{\mathrm{CP}}=\min & \frac{1}{2} \boldsymbol{c}^{\prime} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{\prime}(\boldsymbol{D}+\operatorname{diag}(\boldsymbol{c})) \boldsymbol{x} \\
\text { s.t. } & \sum_{i=1}^{m} x_{i j}=1, \quad \forall j \in J \\
& 0 \leq x_{i j} \leq 1 .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 15.083J / 6.859J Integer Programming and Combinatorial Optimization

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

