15.083J/6.859J Integer Optimization

Lecture 6: Ideal formulations II

1 Outline

• Randomized rounding methods

2 Randomized rounding

- Solve c'x subject to $x \in P$ for arbitrary c.
- x^* be optimal solution.
- From x^* create a new random integer solution x, feasible in P: $E[c'x] = Z_{LP} = c'x^*$.
- $Z_{\rm LP} \leq Z_{\rm IP} \leq {\rm E}[Z_{\rm H}] = Z_{\rm LP}.$
- Hence, P integral.

2.1 Minimum s - t cut

$$\begin{array}{ll} \text{minimize} & \sum_{\{u,v\}\in E} c_{uv} x_{uv} \\ \text{subject to} & x_{uv} \geq y_u - y_v, \qquad \{u,v\}\in E, \\ & x_{uv} \geq y_v - y_u, \qquad \{u,v\}\in E, \\ & y_s = 1, \\ & y_t = 0, \\ & y_u, x_{uv} \in \{0,1\}. \end{array}$$

2.1.1 Algorithm

- Solve linear relaxation. Position the nodes in the interval (0, 1) according to the value of y_u^* .
- Generate a random variable U uniformly in the interval [0, 1].
- Round all nodes u with $y_u^* \leq U$ to $y_u = 0$, and all nodes u with $y_u^* > U$ to $y_u = 1$. Set $x_{uv} = |y_u y_v|$ for all $\{u, v\} \in E$.

2.2 Theorem

For every nonnegative cost vector $\boldsymbol{c},$

$$\mathbf{E}[Z_{\mathbf{H}}] = Z_{\mathbf{IP}} = Z_{\mathbf{LP}}.$$

SLIDE 5

SLIDE 4

SLIDE 2

SLIDE 1

SLIDE 3

 y_u is rounded to 0 y_v is rounded to 1

 y_u^*

 y_t^*

Proof:

$$Z_{\text{IP}} \leq \text{E}[Z_{\text{H}}] = \text{E}\left[\sum_{\{u,v\}\in E} c_{uv} x_{uv}\right]$$
$$= \sum_{\{u,v\}\in E} c_{uv} P\left(\min\left(y_{u}^{*}, y_{v}^{*}\right) \leq U < \max\left(y_{u}^{*}, y_{v}^{*}\right)\right)$$
$$= \sum_{\{u,v\}\in E} c_{uv} |y_{u}^{*} - y_{v}^{*}|$$
$$= Z_{\text{LP}} \leq Z_{\text{IP}}$$

 y_v^*

 y_s^*

2.3 Stable matching

- $n \text{ men } \{m_1, \ldots, m_n\}$ and $n \text{ women } \{w_1, \ldots, w_n\}$, with each person having a list of strict preference order.
- Find a stable perfect matching M of the men to women:
- There does not exist a man m and a woman w who are not matched under M, but prefer each other to their assigned mates under M.

2.3.1 Formulation

- $w_1 >_m w_2$ if man m prefers w_1 to w_2 .
- $m_1 >_w m_2$ if woman w prefers m_1 to m_2 .
- Decision variables

$$x_{ij} = \begin{cases} 1, & \text{if } m_i \text{ is matched to } w_j, \\ 0, & \text{otherwise.} \end{cases}$$

U

SLIDE 7

SLIDE 6

•
$$N = \{1, ..., n\}$$

$$\sum_{j=1}^{n} x_{ij} = 1, \qquad i \in N,$$
$$\sum_{i=1}^{n} x_{ij} = 1, \qquad j \in N,$$

$$x_{ij} \in \{0, 1\}, \qquad i, j \in N,$$
$$x_{ij} + \sum_{\{k \mid w_k < m_i \, w_j\}} x_{ik} + \sum_{\{k \mid m_k < w_j \, m_i\}} x_{kj} \le 1, \qquad i, j \in N.$$

2.3.2 Proposition

 $\boldsymbol{x} \in P_{\mathrm{SM}}$. If $x_{ij} > 0$, then

$$x_{ij} + \sum_{\{k \mid w_k < m_i w_j\}} x_{ik} + \sum_{\{k \mid m_k < w_j m_i\}} x_{kj} = 1.$$

2.3.3 Proof

min $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}$ s.t. $\boldsymbol{x} \in P_{\text{SM}}$

Dual

$$\max \sum_{i=1}^{n} \alpha_i + \sum_{j=1}^{n} \beta_j - \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij}$$

s.t.
$$\alpha_i + \beta_j - \sum_{\{k \mid w_k > m_i w_j\}} \gamma_{ik} - \sum_{\{k \mid m_k > w_j m_i\}} \gamma_{kj} \le 1, \quad i, j \in N,$$
$$\gamma_{ij} \ge 0.$$

 $\boldsymbol{x} \in P_{SM}$. Set

$$\alpha_i = \sum_{j=1}^n \gamma_{ij}, \ \beta_j = \sum_{i=1}^n \gamma_{ij} \text{ and } \gamma_{ij} = x_{ij} \text{ for all } i, j \in N.$$

• Dual:

$$\gamma_{ij} + \sum_{\{k \mid w_k < m_i \, w_j\}} \gamma_{ik} + \sum_{\{k \mid m_k < w_j \, m_i\}} \gamma_{kj} \le 1, \quad \forall \, i, j \in N,$$

feasible if $\gamma_{ij} = x_{ij}$ and $\boldsymbol{x} \in P_{SM}$.

• Objective

$$\sum_{i=1}^{n} \alpha_i + \sum_{j=1}^{n} \beta_j - \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}.$$

• Complementary slackness of optimal primal and dual solutions.

SLIDE 8

SLIDE 9

2.4 Key Theorem

0

 $P_{\rm SM} = \operatorname{conv}(S).$

2.4.1 Randomization

- Generate a random number U uniformly in [0,1].
- Match m_i to w_j if $x_{ij} > 0$ and in the row corresponding to m_i , U lies in the interval spanned by x_{ij} in [0, 1]. Accordingly, match w_j to m_i if in the row corresponding to w_j , U lies in the interval spanned by x_{ij} in [0, 1].
- Key property: $x_{ij} > 0$, then the intervals spanned by x_{ij} in rows corresponding to m_i and w_j coincide in [0, 1].
- SLIDE 12

SLIDE 10

SLIDE 11

- The matching is stable: w_k who is preferred by m_i to his mate w_j under the assignment, i.e., the interval spanned by x_{ik} is on the right of the interval spanned by x_{ij} in the row corresponding to m_i , is assigned a mate whom she strictly prefers to m_i , since in the row corresponding to w_k the random number U lies strictly to the left of the interval x_{ik} .
- $x_{ij}^U = 1$ if m_i and w_j are matched.

 $E[x_{ij}^U] = P(U \text{ lies in the interval spanned by } x_{ij}) = x_{ij}.$

• $x_{ij} = \int_0^1 x_{ij}^u du$: x can be written as a convex combination of stable matchings x^u as u varies over the interval [0, 1].

1

4

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.