15.083J/6.859J Integer Optimization

Lecture 6: Ideal formulations II

1 Outline

- Randomized rounding methods

2 Randomized rounding

- Solve $\boldsymbol{c}^{\prime} \boldsymbol{x}$ subject to $\boldsymbol{x} \in P$ for arbitrary \boldsymbol{c}.
- \boldsymbol{x}^{*} be optimal solution.
- From \boldsymbol{x}^{*} create a new random integer solution \boldsymbol{x}, feasible in $P: \mathrm{E}\left[\boldsymbol{c}^{\prime} \boldsymbol{x}\right]=$ $Z_{\mathrm{LP}}=\boldsymbol{c}^{\prime} \boldsymbol{x}^{*}$.
- $Z_{\mathrm{LP}} \leq Z_{\mathrm{IP}} \leq \mathrm{E}\left[Z_{\mathrm{H}}\right]=Z_{\mathrm{LP}}$.
- Hence, P integral.

2.1 Minimum $s-t$ cut

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{\{u, v\} \in E} c_{u v} x_{u v} & \\
\text { subject to } & x_{u v} \geq y_{u}-y_{v}, & \{u, v\} \in E, \\
& x_{u v} \geq y_{v}-y_{u}, & \{u, v\} \in E, \\
& y_{s}=1, & \\
& y_{t}=0 & \\
& y_{u}, x_{u v} \in\{0,1\} . &
\end{array}
$$

2.1.1 Algorithm

- Solve linear relaxation. Position the nodes in the interval $(0,1)$ according to the value of y_{u}^{*}.
- Generate a random variable U uniformly in the interval $[0,1]$.
- Round all nodes u with $y_{u}^{*} \leq U$ to $y_{u}=0$, and all nodes u with $y_{u}^{*}>U$ to $y_{u}=1$. Set $x_{u v}=\left|y_{u}-y_{v}\right|$ for all $\{u, v\} \in E$.

2.2 Theorem

For every nonnegative cost vector \boldsymbol{c},

$$
\mathrm{E}\left[Z_{\mathrm{H}}\right]=Z_{\mathrm{IP}}=Z_{\mathrm{LP}} .
$$

y_{s}^{*}

Proof:

$$
\begin{aligned}
Z_{\mathrm{IP}} & \leq \mathrm{E}\left[Z_{\mathrm{H}}\right]=\mathrm{E}\left[\sum_{\{u, v\} \in E} c_{u v} x_{u v}\right] \\
& =\sum_{\{u, v\} \in E} c_{u v} \mathrm{P}\left(\min \left(y_{u}^{*}, y_{v}^{*}\right) \leq U<\max \left(y_{u}^{*}, y_{v}^{*}\right)\right) \\
& =\sum_{\{u, v\} \in E} c_{u v}\left|y_{u}^{*}-y_{v}^{*}\right| \\
& =Z_{\mathrm{LP}} \leq Z_{\mathrm{IP}}
\end{aligned}
$$

2.3 Stable matching

- n men $\left\{m_{1}, \ldots, m_{n}\right\}$ and n women $\left\{w_{1}, \ldots, w_{n}\right\}$, with each person having a list of strict preference order.
- Find a stable perfect matching M of the men to women:
- There does not exist a man m and a woman w who are not matched under M, but prefer each other to their assigned mates under M.

2.3.1 Formulation

- $w_{1}>_{m} w_{2}$ if man m prefers w_{1} to w_{2}.
- $m_{1}>_{w} m_{2}$ if woman w prefers m_{1} to m_{2}.
- Decision variables

$$
x_{i j}= \begin{cases}1, & \text { if } m_{i} \text { is matched to } w_{j} \\ 0, & \text { otherwise }\end{cases}
$$

- $N=\{1, \ldots, n\}$

$$
\begin{array}{cc}
\sum_{j=1}^{n} x_{i j}=1, & i \in N, \\
\sum_{i=1}^{n} x_{i j}=1, & j \in N, \\
x_{i j} \in\{0,1\}, & i, j \in N, \\
x_{i j}+\sum_{\left\{k \mid w_{k}<m_{i} w_{j}\right\}} x_{i k}+\sum_{\left\{k \mid m_{k}<w_{j} m_{i}\right\}} x_{k j} \leq 1, & i, j \in N .
\end{array}
$$

2.3.2 Proposition

$x \in P_{\text {SM }}$. If $x_{i j}>0$, then

$$
x_{i j}+\sum_{\left\{k \mid w_{k}<m_{i} w_{j}\right\}} x_{i k}+\sum_{\left\{k \mid m_{k}<w_{j} m_{i}\right\}} x_{k j}=1
$$

2.3.3 Proof

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} \\
\text { s.t. } & \boldsymbol{x} \in P_{\mathrm{SM}}
\end{array}
$$

Dual

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} \alpha_{i}+\sum_{j=1}^{n} \beta_{j}-\sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i j} \\
\text { s.t. } & \alpha_{i}+\beta_{j}-\sum_{\left\{k \mid w_{k}>_{m_{i}} w_{j}\right\}} \gamma_{i k}-\sum_{\left\{k \mid m_{k}>_{w_{j}} m_{i}\right\}} \gamma_{k j} \leq 1, \quad i, j \in N \\
& \gamma_{i j} \geq 0
\end{array}
$$

$\boldsymbol{x} \in P_{\mathrm{SM}}$. Set

$$
\alpha_{i}=\sum_{j=1}^{n} \gamma_{i j}, \beta_{j}=\sum_{i=1}^{n} \gamma_{i j} \text { and } \gamma_{i j}=x_{i j} \text { for all } i, j \in N
$$

- Dual:

$$
\gamma_{i j}+\sum_{\left\{k \mid w_{k}<m_{i} w_{j}\right\}} \gamma_{i k}+\sum_{\left\{k \mid m_{k}<w_{j} m_{i}\right\}} \gamma_{k j} \leq 1, \quad \forall i, j \in N
$$

feasible if $\gamma_{i j}=x_{i j}$ and $\boldsymbol{x} \in P_{\text {SM }}$.

- Objective

$$
\sum_{i=1}^{n} \alpha_{i}+\sum_{j=1}^{n} \beta_{j}-\sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}
$$

- Complementary slackness of optimal primal and dual solutions.

2.4 Key Theorem

$P_{\mathrm{SM}}=\operatorname{conv}(S)$.

2.4.1 Randomization

- Generate a random number U uniformly in $[0,1]$.
- Match m_{i} to w_{j} if $x_{i j}>0$ and in the row corresponding to m_{i}, U lies in the interval spanned by $x_{i j}$ in $[0,1]$. Accordingly, match w_{j} to m_{i} if in the row corresponding to w_{j}, U lies in the interval spanned by $x_{i j}$ in $[0,1]$.
- Key property: $x_{i j}>0$, then the intervals spanned by $x_{i j}$ in rows corresponding to m_{i} and w_{j} coincide in $[0,1]$.
- The matching is stable: w_{k} who is preferred by m_{i} to his mate w_{j} under the assignment, i.e., the interval spanned by $x_{i k}$ is on the right of the interval spanned by $x_{i j}$ in the row corresponding to m_{i}, is assigned a mate whom she strictly prefers to m_{i}, since in the row corresponding to w_{k} the random number U lies strictly to the left of the interval $x_{i k}$.
- $x_{i j}^{U}=1$ if m_{i} and w_{j} are matched.

$$
\mathrm{E}\left[x_{i j}^{U}\right]=\mathrm{P}\left(U \text { lies in the interval spanned by } x_{i j}\right)=x_{i j} .
$$

- $x_{i j}=\int_{0}^{1} x_{i j}^{u} d u: \boldsymbol{x}$ can be written as a convex combination of stable matchings x^{u} as u varies over the interval $[0,1]$.

MIT OpenCourseWare
http://ocw.mit.edu
15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

