15.083J/6.859J Integer Optimization

Lecture 13: Lattices I

1 Outline

- Integer points in lattices.
- Is $\{x \in \mathbb{Z}^n \mid Ax = b\}$ nonempty?

2 Integer points in lattices

• $\boldsymbol{B} = [\boldsymbol{b}^1, \dots, \boldsymbol{b}^d] \in \mathcal{R}^{n \times d}, \, \boldsymbol{b}^1, \dots, \boldsymbol{b}^d$ are linearly independent.

$$\mathcal{L} = \mathcal{L}(\boldsymbol{B}) = \{ \boldsymbol{y} \in \mathcal{R}^n \mid \boldsymbol{y} = \boldsymbol{B} \boldsymbol{v}, \;\; \boldsymbol{v} \in \mathcal{Z}^d \}$$

is called the **lattice** generated by B. B is called a **basis** of $\mathcal{L}(B)$.

- $\boldsymbol{b}^i = \boldsymbol{e}_i, i = 1, \dots, n \; \boldsymbol{e}_i$ is the *i*-th unit vector, then $\mathcal{L}(\boldsymbol{e}_1, \dots, \boldsymbol{e}_n) = \mathcal{Z}^n$.
- $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{L}(\boldsymbol{B})$ and $\lambda, \mu \in \mathcal{Z}, \lambda \boldsymbol{x} + \mu \boldsymbol{y} \in \mathcal{L}(\boldsymbol{B}).$

2.1 Multiple bases

SLIDE 3
$$b^1 = (1,2)', b^2 = (2,1)', b^3 = (1,-1)'.$$
 Then, $\mathcal{L}(b^1, b^2) = \mathcal{L}(b^2, b^3).$

SLIDE 1

2.2 Alternative bases

Let $\boldsymbol{B} = [\boldsymbol{b}^1, \dots, \boldsymbol{b}^d]$ be a basis of the lattice \mathcal{L} .

- If $U \in \mathcal{R}^{d \times d}$ is unimodular, then $\overline{B} = BU$ is a basis of the lattice \mathcal{L} .
- If B and \overline{B} are bases of \mathcal{L} , then there exists a unimodular matrix U such that $\overline{B} = BU$.
- If **B** and \overline{B} are bases of \mathcal{L} , then $|\det(B)| = |\det(\overline{B})|$.

2.3 Proof

- For all $x \in \mathcal{L}$: x = Bv with $v \in \mathbb{Z}^d$.
- $\det(U) = \pm 1$, and $\det(U^{-1}) = 1/\det(U) = \pm 1$.
- $x = BUU^{-1}v$.
- From Cramer's rule, U^{-1} has integral coordinates, and thus $w = U^{-1}v$ is integral.
- $\overline{B} = BU$. Then, $x = \overline{B}w$, with $w \in \mathbb{Z}^d$, which implies that \overline{B} is a basis of \mathcal{L} .
- $B = [b^1, \ldots, b^d]$ and $\overline{B} = [\overline{b}^1, \ldots, \overline{b}^d]$ be bases of \mathcal{L} . Then, the vectors b^1, \ldots, b^d and the vectors $\overline{b}^1, \ldots, \overline{b}^d$ are both linearly independent.
- $V = \{ By \mid y \in \mathbb{R}^n \} = \{ \overline{B}y \mid y \in \mathbb{R}^n \}.$
- There exists an invertible $d \times d$ matrix \boldsymbol{U} such that

$$B = \overline{B}U$$
 and $\overline{B} = BU^{-1}$.

- $\boldsymbol{b}^i = \overline{\boldsymbol{B}} \boldsymbol{U}_i, \ \boldsymbol{U}_i \in \boldsymbol{\mathcal{Z}}^d \text{ and } \overline{\boldsymbol{b}}^i = \boldsymbol{B} \boldsymbol{U}_i^{-1}, \ \boldsymbol{U}_i^{-1} \in \boldsymbol{\mathcal{Z}}^d.$
- U and U⁻¹ are both integral, and thus both det(U) and det(U⁻¹) are integral, leading to det(U) = ±1.
- $|\det(\overline{B})| = |\det(B)| |\det(U)| = |\det(B)|.$

2.4 Convex Body Theorem

Let \mathcal{L} be a lattice in \mathcal{R}^n and let $A \in \mathcal{R}^n$ be a convex set such that $\operatorname{vol}(A) > 2^n \operatorname{det}(\mathcal{L})$ and A is symmetric around the origin, i.e., $z \in A$ if and only if $-z \in A$. Then A contains a non-zero lattice point.

2.5 Integer normal form

- $A \in \mathbb{Z}^{m \times n}$ of full row rank is in **integer normal form**, if it is of the form [B, 0], where $B \in \mathbb{Z}^{m \times m}$ is invertible, has integral elements and is lower triangular.
- Elementary operations:
 - (a) Exchanging two columns;
 - (b) Multiplying a column by -1.
 - (c) Adding an integral multiple of one column to another.
- Theorem: (a) A full row rank $A \in \mathbb{Z}^{m \times n}$ can be brought into the integer normal form [B, 0] using elementary column operations;
 - (b) There is a unimodular matrix U such that [B, 0] = AU.

SLIDE 7

SLIDE 6

SLIDE 4

Slide 5

2.6 Proof

• We show by induction that by applying elementary column operations (a)-(c), we can transform A to

$$\left[\begin{array}{cc} \alpha & \mathbf{0} \\ \mathbf{v} & \mathbf{C} \end{array}\right],\tag{1}$$

where $\alpha \in \mathcal{Z}_+ \setminus \{0\}$, $\boldsymbol{v} \in \mathcal{Z}^{m-1}$ and $\boldsymbol{C} \in \mathcal{Z}^{(m-1)\times(n-1)}$ is of full row rank. By proceeding inductively on the matrix \boldsymbol{C} we prove part (a).

• By iteratively exchanging two columns of A (Operation (a)) and possibly multiplying columns by -1 (Operation (b)), we can transform A (and renumber the column indices) such that

$$a_{1,1} \ge a_{1,2} \ge \ldots \ge a_{1,n} \ge 0.$$

• Since A is of full row rank, $a_{1,1} > 0$. Let $k = \max\{i : a_{1,i} > 0\}$. If k = 1, then we have transformed A into a matrix of the form (1). Otherwise, $k \ge 2$ and by applying k - 1 operations (c) we transform A to

$$\overline{\boldsymbol{A}} = \left[\boldsymbol{A}_1 - \left\lfloor \frac{a_{1,1}}{a_{1,2}} \right\rfloor \boldsymbol{A}_2, \dots, \boldsymbol{A}_{k-1} - \left\lfloor \frac{a_{1,k-1}}{a_{1,k}} \right\rfloor \boldsymbol{A}_k, \boldsymbol{A}_k, \boldsymbol{A}_{k+1}, \dots, \boldsymbol{A}_n \right].$$

• Repeat the process to \overline{A} , and exchange two columns of \overline{A} such that

$$\overline{a}_{1,1} \ge \overline{a}_{1,2} \ge \ldots \ge \overline{a}_{1,n} \ge 0.$$

• $\max\{i: \overline{a}_{1,i} > 0\} \le k$

$$\sum_{i=1}^{k} \overline{a}_{1,i} \le \sum_{i=1}^{k-1} (a_{1,i} - a_{1,i+1}) + a_{1,k} = a_{1,1} < \sum_{i=1}^{k} a_{1,i},$$

which implies that after a finite number of iterations A is transformed by elementary column operations (a)-(c) into a matrix of the form (1).

• Each of the elementary column operations corresponds to multiplying matrix **A** by a unimodular matrix as follows:

(i) Exchanging columns k and j of matrix A corresponds to multiplying matrix A by a unimodular matrix $U_1 = I + I_{k,j} + I_{j,k} - I_{k,k} - I_{j,j}$. det $(U_1) = -1$.

(ii) Multiplying column j by -1 corresponds to multiplying matrix A by a unimodular matrix $U_2 = I - 2I_{j,j}$, that is an identity matrix except that element (j, j) is -1. det $(U_2) = -1$.

(iii) Adding $f \in \mathbb{Z}$ times column k to column j, corresponds to multiplying matrix A by a unimodular matrix $U_3 = I + fI_{k,j}$. Since det $(U_3) = 1$, U_3 is unimodular.

• Performing two elementary column operations corresponds to multiplying the corresponding unimodular matrices resulting in another unimodular matrix.

2.7 Example

$$\begin{array}{ccc} 3 & -4 & 2 \\ 1 & 0 & 7 \end{array} \end{array} \longrightarrow \left[\begin{array}{ccc} 4 & 3 & 2 \\ 0 & 1 & 7 \end{array} \right] \\ \left[\begin{array}{ccc} 1 & 1 & 2 \\ -1 & -6 & 7 \end{array} \right]$$

• Reordering the columns

$$\left[\begin{array}{rrrr} 2 & 1 & 1 \\ 7 & -6 & -1 \end{array}\right]$$

• Replacing columns one and two by the difference of the first and twice the second column and the second and third column, respectively, yields

$$\left[\begin{array}{rrr} 0 & 0 & 1 \\ 19 & -5 & -1 \end{array}\right].$$

• Reordering the columns

 $\left[\begin{array}{rrrr} 1 & 0 & 0 \\ -1 & 19 & -5 \end{array}\right].$

• Continuing with the matrix C = [19, -5], we obtain successively, the matrices [19, 5], [4, 5], [5, 4], [1, 4], [4, 1], [0, 1], and [1, 0]. The integer normal form is:

Γ	1	0	0]
[.	-1	1	0	

2.8 Characterization

 $A \in \mathbb{Z}^{m \times n}$, full row rank; [B, 0] = AU. Let $b \in \mathbb{Z}^m$ and $S = \{x \in \mathbb{Z}^n \mid Ax = b\}$.

- (a) The set S is nonempty if and only if $B^{-1}b \in \mathbb{Z}^m$.
- (b) If $S \neq \emptyset$, every solution of S is of the form

$$oldsymbol{x} = oldsymbol{U}_1 oldsymbol{B}^{-1} oldsymbol{b} + oldsymbol{U}_2 oldsymbol{z}, \ oldsymbol{z} \in \mathcal{Z}^{n-m},$$

where $\boldsymbol{U}_1, \, \boldsymbol{U}_2$: $\boldsymbol{U} = [\boldsymbol{U}_1, \boldsymbol{U}_2].$

(c) $\mathcal{L} = \{x \in \mathbb{Z}^n \mid Ax = 0\}$ is a lattice and the column vectors of U_2 constitute a basis of \mathcal{L} .

2.9 Proof

• $y = U^{-1}x$. Since U is unimodular, $y \in \mathbb{Z}^n$ if and only if $x \in \mathbb{Z}^n$. Thus, S is nonempty if and only if there exists a $y \in \mathbb{Z}^n$ such that [B, 0]y = b. Since B is invertible, the latter is true if and only $B^{-1}b \in \mathbb{Z}^m$.

SLIDE 10

SLIDE 11

Slide 9

• We can express the set S as follows:

$$S = \{ \boldsymbol{x} \in \mathcal{Z}^n \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \}$$

= $\{ \boldsymbol{x} \in \mathcal{Z}^n \mid \boldsymbol{x} = \boldsymbol{U}\boldsymbol{y}, \ [\boldsymbol{B}, \boldsymbol{0}]\boldsymbol{y} = \boldsymbol{b}, \ \boldsymbol{y} \in \mathcal{Z}^n \}$
= $\{ \boldsymbol{x} \in \mathcal{Z}^n \mid \boldsymbol{x} = \boldsymbol{U}_1 \boldsymbol{w} + \boldsymbol{U}_2 \boldsymbol{z}, \ \boldsymbol{B}\boldsymbol{w} = \boldsymbol{b}, \ \boldsymbol{w} \in \mathcal{Z}^m, \ \boldsymbol{z} \in \mathcal{Z}^{n-m} \}$

Thus, if $S \neq \emptyset$, then $B^{-1}b \in \mathbb{Z}^m$ from part (a) and hence,

$$S = \{ \boldsymbol{x} \in \mathcal{Z}^n \mid \boldsymbol{x} = \boldsymbol{U}_1 \boldsymbol{B}^{-1} \boldsymbol{b} + \boldsymbol{U}_2 \boldsymbol{z}, \ \boldsymbol{z} \in \mathcal{Z}^{n-m} \}$$

• Let $\mathcal{L} = \{ x \in \mathbb{Z}^n \mid Ax = 0 \}$. By setting b = 0 in part (b) we obtain that $\mathcal{L} = \{ x \in \mathbb{Z}^n \mid x = U_2 z, \ z \in \mathbb{Z}^{n-m} \}.$

Thus, by definition, \mathcal{L} is a lattice with basis U_2 .

2.10 Example

• Is $S = \{ \boldsymbol{x} \in \mathcal{Z}^3 \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \}$ is nonempty

$$\boldsymbol{A} = \left[\begin{array}{cc} 3 & 6 & 1 \\ 4 & 5 & 5 \end{array} \right] \text{ and } \boldsymbol{b} = \left[\begin{array}{c} 3 \\ 2 \end{array} \right].$$

• Integer normal form: [B, 0] = AU, with

$$[\boldsymbol{B}, \boldsymbol{0}] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 5 & 1 & 0 \end{array} \right] \text{ and } \boldsymbol{U} = \left[\begin{array}{ccc} 0 & 9 & -25 \\ 0 & -4 & 11 \\ 1 & -3 & 9 \end{array} \right].$$

Note that $\det(\boldsymbol{U}) = -1$. Since $\boldsymbol{B}^{-1}\boldsymbol{b} = (3, -13)' \in \mathcal{Z}^2, \ S \neq \emptyset$.

• All integer solutions of S are given by

$$\boldsymbol{x} = \begin{bmatrix} 0 & 9\\ 0 & -4\\ 1 & -3 \end{bmatrix} \begin{bmatrix} 3\\ -13 \end{bmatrix} + \begin{bmatrix} -25\\ 11\\ 9 \end{bmatrix} \boldsymbol{z} = \begin{bmatrix} -117 & -25z\\ 52 & +11z\\ 42 & +9z \end{bmatrix}, \quad z \in \mathcal{Z}.$$

2.11 Integral Farkas lemma

Let $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$ and $S = \{x \in \mathbb{Z}^n \mid Ax = b\}$.

- The set $S = \emptyset$ if and only if there exists a $y \in Q^m$, such that $y'A \in Z^m$ and $y'b \notin Z$.
- The set $S = \emptyset$ if and only if there exists a $y \in Q^m$, such that $y \ge 0$, $y'A \in Z^m$ and $y'b \notin Z$.

2.12 Proof

- Assume that $S \neq \emptyset$. If there exists $y \in Q^m$, such that $y'A \in Z^m$ and $y'b \notin Z$, then y'Ax = y'b with $y'Ax \in Z$ and $y'b \notin Z$.
- Conversely, if $S = \emptyset$, then by previous theorem, $\boldsymbol{u} = \boldsymbol{B}^{-1}\boldsymbol{b} \notin \mathbb{Z}^m$, that is there exists an *i* such that $u_i \notin \mathbb{Z}$. Taking \boldsymbol{y} to be the *i*th row of \boldsymbol{B}^{-1} proves the theorem.

SLIDE 12

SLIDE 14

2.13 Reformulations

- max c'x, $x \in S = \{x \in Z_+^n \mid Ax = b\}$.
- [B, 0] = AU. There exists $x^0 \in \mathbb{Z}^n$: $Ax^0 = b$ iff $B^{-1}b \notin \mathbb{Z}^m$.

•

$$x \in S \iff x = x^0 + y : Ay = 0, -x^0 \le y.$$

Let

$$\mathcal{L} = \{ m{y} \in \mathcal{Z}^n \mid Am{y} = m{0} \}.$$

Let \boldsymbol{U}_2 be a basis of \mathcal{L} , i.e.,

$$\mathcal{L} = \{ oldsymbol{y} \in \mathcal{Z}^n \mid oldsymbol{y} = oldsymbol{U}_2 oldsymbol{z}, \ oldsymbol{z} \in \mathcal{Z}^{n-m} \}.$$

•

• Different bases give rise to alternative reformulations

$$\begin{array}{ll} \max & \boldsymbol{c}' \boldsymbol{B} \boldsymbol{z} \\ \text{s.t.} & \overline{\boldsymbol{B}} \boldsymbol{z} \geq - \boldsymbol{x}^0 \\ & \boldsymbol{z} \in \mathcal{Z}^{n-m}. \end{array}$$

_

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.