15.083J/6.859J Integer Optimization

Lecture 13: Lattices I

## 1 Outline

- Integer points in lattices.
- Is $\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$ nonempty?


## 2 Integer points in lattices

- $\boldsymbol{B}=\left[\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}\right] \in \mathcal{R}^{n \times d}, \boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}$ are linearly independent.

$$
\mathcal{L}=\mathcal{L}(\boldsymbol{B})=\left\{\boldsymbol{y} \in \mathcal{R}^{n} \mid \boldsymbol{y}=\boldsymbol{B} \boldsymbol{v}, \quad \boldsymbol{v} \in \mathcal{Z}^{d}\right\}
$$

is called the lattice generated by $\boldsymbol{B} . \boldsymbol{B}$ is called a basis of $\mathcal{L}(\boldsymbol{B})$.

- $\boldsymbol{b}^{i}=\boldsymbol{e}_{i}, i=1, \ldots, n \boldsymbol{e}_{i}$ is the $i$-th unit vector, then $\mathcal{L}\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=\mathcal{Z}^{n}$.
- $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{L}(\boldsymbol{B})$ and $\lambda, \mu \in \mathcal{Z}, \lambda \boldsymbol{x}+\mu \boldsymbol{y} \in \mathcal{L}(\boldsymbol{B})$.


### 2.1 Multiple bases

$\boldsymbol{b}^{1}=(1,2)^{\prime}, \boldsymbol{b}^{2}=(2,1)^{\prime}, \boldsymbol{b}^{3}=(1,-1)^{\prime}$. Then, $\mathcal{L}\left(\boldsymbol{b}^{1}, \boldsymbol{b}^{2}\right)=\mathcal{L}\left(\boldsymbol{b}^{2}, \boldsymbol{b}^{3}\right)$.


### 2.2 Alternative bases

Let $\boldsymbol{B}=\left[\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}\right]$ be a basis of the lattice $\mathcal{L}$.

- If $\boldsymbol{U} \in \mathcal{R}^{d \times d}$ is unimodular, then $\overline{\boldsymbol{B}}=\boldsymbol{B} \boldsymbol{U}$ is a basis of the lattice $\mathcal{L}$.
- If $\boldsymbol{B}$ and $\overline{\boldsymbol{B}}$ are bases of $\mathcal{L}$, then there exists a unimodular matrix $\boldsymbol{U}$ such that $\bar{B}=B U$.
- If $\boldsymbol{B}$ and $\overline{\boldsymbol{B}}$ are bases of $\mathcal{L}$, then $|\operatorname{det}(\boldsymbol{B})|=|\operatorname{det}(\overline{\boldsymbol{B}})|$.


### 2.3 Proof

- For all $\boldsymbol{x} \in \mathcal{L}: \boldsymbol{x}=\boldsymbol{B} \boldsymbol{v}$ with $\boldsymbol{v} \in \mathcal{Z}^{d}$.
- $\operatorname{det}(\boldsymbol{U})= \pm 1$, and $\operatorname{det}\left(\boldsymbol{U}^{-1}\right)=1 / \operatorname{det}(\boldsymbol{U})= \pm 1$.
- $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{U} \boldsymbol{U}^{-1} \boldsymbol{v}$.
- From Cramer's rule, $\boldsymbol{U}^{-1}$ has integral coordinates, and thus $\boldsymbol{w}=\boldsymbol{U}^{-1} \boldsymbol{v}$ is integral.
- $\overline{\boldsymbol{B}}=\boldsymbol{B} \boldsymbol{U}$. Then, $\boldsymbol{x}=\overline{\boldsymbol{B}} \boldsymbol{w}$, with $\boldsymbol{w} \in \mathcal{Z}^{d}$, which implies that $\overline{\boldsymbol{B}}$ is a basis of $\mathcal{L}$.
- $\boldsymbol{B}=\left[\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}\right]$ and $\overline{\boldsymbol{B}}=\left[\overline{\boldsymbol{b}}^{1}, \ldots, \overline{\boldsymbol{b}}^{d}\right]$ be bases of $\mathcal{L}$. Then, the vectors $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}$ and the vectors $\overline{\boldsymbol{b}}^{1}, \ldots, \overline{\boldsymbol{b}}^{d}$ are both linearly independent.
- $V=\left\{\boldsymbol{B} \boldsymbol{y} \mid \boldsymbol{y} \in \mathcal{R}^{n}\right\}=\left\{\overline{\boldsymbol{B}} \boldsymbol{y} \mid \boldsymbol{y} \in \mathcal{R}^{n}\right\}$.
- There exists an invertible $d \times d$ matrix $\boldsymbol{U}$ such that

$$
\boldsymbol{B}=\overline{\boldsymbol{B}} \boldsymbol{U} \text { and } \overline{\boldsymbol{B}}=\boldsymbol{B} \boldsymbol{U}^{-1} .
$$

- $\boldsymbol{b}^{i}=\overline{\boldsymbol{B}} \boldsymbol{U}_{i}, \boldsymbol{U}_{i} \in \mathcal{Z}^{d}$ and $\overline{\boldsymbol{b}}^{i}=\boldsymbol{B} \boldsymbol{U}_{i}^{-1}, \boldsymbol{U}_{i}^{-1} \in \mathcal{Z}^{d}$.
- $\boldsymbol{U}$ and $\boldsymbol{U}^{-1}$ are both integral, and thus both $\operatorname{det}(\boldsymbol{U})$ and $\operatorname{det}\left(\boldsymbol{U}^{-1}\right)$ are integral, leading to $\operatorname{det}(\boldsymbol{U})= \pm 1$.
- $|\operatorname{det}(\overline{\boldsymbol{B}})|=|\operatorname{det}(\boldsymbol{B})||\operatorname{det}(\boldsymbol{U})|=|\operatorname{det}(\boldsymbol{B})|$.


### 2.4 Convex Body Theorem

Let $\mathcal{L}$ be a lattice in $\mathcal{R}^{n}$ and let $A \in \mathcal{R}^{n}$ be a convex set such that $\operatorname{vol}(A)>$ $2^{n} \operatorname{det}(\mathcal{L})$ and $A$ is symmetric around the origin, i.e., $\boldsymbol{z} \in A$ if and only if $-\boldsymbol{z} \in A$. Then $A$ contains a non-zero lattice point.

### 2.5 Integer normal form

- $\boldsymbol{A} \in \mathcal{Z}^{m \times n}$ of full row rank is in integer normal form, if it is of the form $[\boldsymbol{B}, \mathbf{0}]$, where $\boldsymbol{B} \in \mathcal{Z}^{m \times m}$ is invertible, has integral elements and is lower triangular.
- Elementary operations:
(a) Exchanging two columns;
(b) Multiplying a column by -1 .
(c) Adding an integral multiple of one column to another.
- Theorem: (a) A full row rank $\boldsymbol{A} \in \mathcal{Z}^{m \times n}$ can be brought into the integer normal form $[\boldsymbol{B}, \mathbf{0}]$ using elementary column operations;
(b) There is a unimodular matrix $\boldsymbol{U}$ such that $[\boldsymbol{B}, \mathbf{0}]=\boldsymbol{A} \boldsymbol{U}$.


### 2.6 Proof

- We show by induction that by applying elementary column operations (a)-(c), we can transform $\boldsymbol{A}$ to

$$
\left[\begin{array}{ll}
\alpha & 0  \tag{1}\\
\boldsymbol{v} & \boldsymbol{C}
\end{array}\right]
$$

where $\alpha \in \mathcal{Z}_{+} \backslash\{0\}, \boldsymbol{v} \in \mathcal{Z}^{m-1}$ and $\boldsymbol{C} \in \mathcal{Z}^{(m-1) \times(n-1)}$ is of full row rank. By proceeding inductively on the matrix $\boldsymbol{C}$ we prove part (a).

- By iteratively exchanging two columns of $\boldsymbol{A}$ (Operation (a)) and possibly multiplying columns by -1 (Operation (b)), we can transform $\boldsymbol{A}$ (and renumber the column indices) such that

$$
a_{1,1} \geq a_{1,2} \geq \ldots \geq a_{1, n} \geq 0
$$

- Since $\boldsymbol{A}$ is of full row rank, $a_{1,1}>0$. Let $k=\max \left\{i: a_{1, i}>0\right\}$. If $k=1$, then we have transformed $\boldsymbol{A}$ into a matrix of the form (1). Otherwise, $k \geq 2$ and by applying $k-1$ operations (c) we transform $\boldsymbol{A}$ to

$$
\overline{\boldsymbol{A}}=\left[\boldsymbol{A}_{1}-\left\lfloor\frac{a_{1,1}}{a_{1,2}}\right\rfloor \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{k-1}-\left\lfloor\frac{a_{1, k-1}}{a_{1, k}}\right\rfloor \boldsymbol{A}_{k}, \boldsymbol{A}_{k}, \boldsymbol{A}_{k+1}, \ldots, \boldsymbol{A}_{n}\right] .
$$

- Repeat the process to $\overline{\boldsymbol{A}}$, and exchange two columns of $\overline{\boldsymbol{A}}$ such that

$$
\bar{a}_{1,1} \geq \bar{a}_{1,2} \geq \ldots \geq \bar{a}_{1, n} \geq 0 .
$$

- $\max \left\{i: \bar{a}_{1, i}>0\right\} \leq k$

$$
\sum_{i=1}^{k} \bar{a}_{1, i} \leq \sum_{i=1}^{k-1}\left(a_{1, i}-a_{1, i+1}\right)+a_{1, k}=a_{1,1}<\sum_{i=1}^{k} a_{1, i}
$$

which implies that after a finite number of iterations $\boldsymbol{A}$ is transformed by elementary column operations (a)-(c) into a matrix of the form (1).

- Each of the elementary column operations corresponds to multiplying matrix $\boldsymbol{A}$ by a unimodular matrix as follows:
(i) Exchanging columns $k$ and $j$ of matrix $\boldsymbol{A}$ corresponds to multiplying matrix $\boldsymbol{A}$ by a unimodular matrix $\boldsymbol{U}_{1}=\boldsymbol{I}+\boldsymbol{I}_{k, j}+\boldsymbol{I}_{j, k}-\boldsymbol{I}_{k, k}-\boldsymbol{I}_{j, j} . \operatorname{det}\left(\boldsymbol{U}_{1}\right)=$ -1 .
(ii) Multiplying column $j$ by -1 corresponds to multiplying matrix $\boldsymbol{A}$ by a unimodular matrix $\boldsymbol{U}_{2}=\boldsymbol{I}-2 \boldsymbol{I}_{j, j}$, that is an identity matrix except that element $(j, j)$ is -1 . $\operatorname{det}\left(\boldsymbol{U}_{2}\right)=-1$.
(iii) Adding $f \in \mathcal{Z}$ times column $k$ to column $j$, corresponds to multiplying matrix $\boldsymbol{A}$ by a unimodular matrix $\boldsymbol{U}_{3}=\boldsymbol{I}+f \boldsymbol{I}_{k, j}$. Since $\operatorname{det}\left(\boldsymbol{U}_{3}\right)=1, \boldsymbol{U}_{3}$ is unimodular.
- Performing two elementary column operations corresponds to multiplying the corresponding unimodular matrices resulting in another unimodular matrix.


### 2.7 Example

$$
\left[\begin{array}{rrr}
3 & -4 & 2 \\
1 & 0 & 7
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
4 & 3 & 2 \\
0 & 1 & 7
\end{array}\right]
$$

.

$$
\left[\begin{array}{rrr}
1 & 1 & 2 \\
-1 & -6 & 7
\end{array}\right]
$$

- Reordering the columns

$$
\left[\begin{array}{rrr}
2 & 1 & 1 \\
7 & -6 & -1
\end{array}\right]
$$

- Replacing columns one and two by the difference of the first and twice the second column and the second and third column, respectively, yields

$$
\left[\begin{array}{rrr}
0 & 0 & 1 \\
19 & -5 & -1
\end{array}\right] .
$$

- Reordering the columns

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 19 & -5
\end{array}\right] .
$$

- Continuing with the matrix $\boldsymbol{C}=[19,-5]$, we obtain successively, the matrices $[19,5],[4,5],[5,4],[1,4],[4,1],[0,1]$, and $[1,0]$. The integer normal form is:

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0
\end{array}\right]
$$

### 2.8 Characterization

$\boldsymbol{A} \in \mathcal{Z}^{m \times n}$, full row rank; $[\boldsymbol{B}, \mathbf{0}]=\boldsymbol{A} \boldsymbol{U}$. Let $\boldsymbol{b} \in \mathcal{Z}^{m}$ and $S=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$.
(a) The set $S$ is nonempty if and only if $\boldsymbol{B}^{-1} \boldsymbol{b} \in \mathcal{Z}^{m}$.
(b) If $S \neq \emptyset$, every solution of $S$ is of the form

$$
\boldsymbol{x}=\boldsymbol{U}_{1} \boldsymbol{B}^{-1} \boldsymbol{b}+\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{z} \in \mathcal{Z}^{n-m}
$$

where $\boldsymbol{U}_{1}, \boldsymbol{U}_{2}: \boldsymbol{U}=\left[\boldsymbol{U}_{1}, \boldsymbol{U}_{2}\right]$.
(c) $\mathcal{L}=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A x}=\mathbf{0}\right\}$ is a lattice and the column vectors of $\boldsymbol{U}_{2}$ constitute a basis of $\mathcal{L}$.

### 2.9 Proof

- $\boldsymbol{y}=\boldsymbol{U}^{-1} \boldsymbol{x}$. Since $\boldsymbol{U}$ is unimodular, $\boldsymbol{y} \in \mathcal{Z}^{n}$ if and only if $\boldsymbol{x} \in \mathcal{Z}^{n}$. Thus, $S$ is nonempty if and only if there exists a $\boldsymbol{y} \in \mathcal{Z}^{n}$ such that $[\boldsymbol{B}, \mathbf{0}] \boldsymbol{y}=\boldsymbol{b}$. Since $\boldsymbol{B}$ is invertible, the latter is true if and only $\boldsymbol{B}^{-1} \boldsymbol{b} \in \mathcal{Z}^{m}$.
- We can express the set $S$ as follows:

$$
\begin{aligned}
S & =\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\} \\
& =\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{x}=\boldsymbol{U} \boldsymbol{y},[\boldsymbol{B}, \mathbf{0}] \boldsymbol{y}=\boldsymbol{b}, \boldsymbol{y} \in \mathcal{Z}^{n}\right\} \\
& =\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{x}=\boldsymbol{U}_{1} \boldsymbol{w}+\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{B} \boldsymbol{w}=\boldsymbol{b}, \boldsymbol{w} \in \mathcal{Z}^{m}, \boldsymbol{z} \in \mathcal{Z}^{n-m}\right\} .
\end{aligned}
$$

Thus, if $S \neq \emptyset$, then $\boldsymbol{B}^{-1} \boldsymbol{b} \in \mathcal{Z}^{m}$ from part (a) and hence,

$$
S=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{x}=\boldsymbol{U}_{1} \boldsymbol{B}^{-1} \boldsymbol{b}+\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{z} \in \mathcal{Z}^{n-m}\right\} .
$$

- Let $\mathcal{L}=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A x}=\mathbf{0}\right\}$. By setting $\boldsymbol{b}=\mathbf{0}$ in part (b) we obtain that

$$
\mathcal{L}=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{x}=\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{z} \in \mathcal{Z}^{n-m}\right\} .
$$

Thus, by definition, $\mathcal{L}$ is a lattice with basis $\boldsymbol{U}_{2}$.

### 2.10 Example

- Is $S=\left\{\boldsymbol{x} \in \mathcal{Z}^{3} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$ is nonempty

$$
\boldsymbol{A}=\left[\begin{array}{lll}
3 & 6 & 1 \\
4 & 5 & 5
\end{array}\right] \text { and } \boldsymbol{b}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

- Integer normal form: $[\boldsymbol{B}, \mathbf{0}]=\boldsymbol{A} \boldsymbol{U}$, with

$$
[\boldsymbol{B}, \mathbf{0}]=\left[\begin{array}{lll}
1 & 0 & 0 \\
5 & 1 & 0
\end{array}\right] \text { and } \boldsymbol{U}=\left[\begin{array}{rrr}
0 & 9 & -25 \\
0 & -4 & 11 \\
1 & -3 & 9
\end{array}\right]
$$

Note that $\operatorname{det}(\boldsymbol{U})=-1$. Since $\boldsymbol{B}^{-1} \boldsymbol{b}=(3,-13)^{\prime} \in \mathcal{Z}^{2}, S \neq \emptyset$.

- All integer solutions of $S$ are given by

$$
\boldsymbol{x}=\left[\begin{array}{rr}
0 & 9 \\
0 & -4 \\
1 & -3
\end{array}\right]\left[\begin{array}{r}
3 \\
-13
\end{array}\right]+\left[\begin{array}{r}
-25 \\
11 \\
9
\end{array}\right] \quad z=\left[\begin{array}{r}
-117-25 z \\
52+11 z \\
42+9 z
\end{array}\right], \quad z \in \mathcal{Z} .
$$

### 2.11 Integral Farkas lemma

Let $\boldsymbol{A} \in \mathcal{Z}^{m \times n}, \boldsymbol{b} \in \mathcal{Z}^{m}$ and $S=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$.

- The set $S=\emptyset$ if and only if there exists a $\boldsymbol{y} \in \mathcal{Q}^{m}$, such that $\boldsymbol{y}^{\prime} \boldsymbol{A} \in \mathcal{Z}^{m}$ and $\boldsymbol{y}^{\prime} \boldsymbol{b} \notin \mathcal{Z}$.
- The set $S=\emptyset$ if and only if there exists a $\boldsymbol{y} \in \mathcal{Q}^{m}$, such that $\boldsymbol{y} \geq \mathbf{0}$, $\boldsymbol{y}^{\prime} \boldsymbol{A} \in \mathcal{Z}^{m}$ and $\boldsymbol{y}^{\prime} \boldsymbol{b} \notin \mathcal{Z}$.


### 2.12 Proof

- Assume that $S \neq \emptyset$. If there exists $\boldsymbol{y} \in \mathcal{Q}^{m}$, such that $\boldsymbol{y}^{\prime} \boldsymbol{A} \in \mathcal{Z}^{m}$ and $\boldsymbol{y}^{\prime} \boldsymbol{b} \notin \mathcal{Z}$, then $\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}^{\prime} \boldsymbol{b}$ with $\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{x} \in \mathcal{Z}$ and $\boldsymbol{y}^{\prime} \boldsymbol{b} \notin \mathcal{Z}$.
- Conversely, if $S=\emptyset$, then by previous theorem, $\boldsymbol{u}=\boldsymbol{B}^{-1} \boldsymbol{b} \notin \mathcal{Z}^{m}$, that is there exists an $i$ such that $u_{i} \notin \mathcal{Z}$. Taking $\boldsymbol{y}$ to be the $i$ th row of $\boldsymbol{B}^{-1}$ proves the theorem.


### 2.13 Reformulations

- max $\boldsymbol{c}^{\prime} \boldsymbol{x}, \boldsymbol{x} \in S=\left\{\boldsymbol{x} \in \mathcal{Z}_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$.
- $[\boldsymbol{B}, \mathbf{0}]=\boldsymbol{A} \boldsymbol{U}$. There exists $\boldsymbol{x}^{0} \in \mathcal{Z}^{n}: \boldsymbol{A} \boldsymbol{x}^{0}=\boldsymbol{b}$ iff $\boldsymbol{B}^{-1} \boldsymbol{b} \notin \mathcal{Z}^{m}$.
- 

$$
\boldsymbol{x} \in S \Longleftrightarrow \boldsymbol{x}=\boldsymbol{x}^{0}+\boldsymbol{y}: \quad \boldsymbol{A} y=\mathbf{0},-\boldsymbol{x}^{0} \leq \boldsymbol{y}
$$

Let

$$
\mathcal{L}=\left\{\boldsymbol{y} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{y}=\mathbf{0}\right\} .
$$

Let $\boldsymbol{U}_{2}$ be a basis of $\mathcal{L}$, i.e.,

$$
\mathcal{L}=\left\{\boldsymbol{y} \in \mathcal{Z}^{n} \mid \boldsymbol{y}=\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{z} \in \mathcal{Z}^{n-m}\right\} .
$$

$\max \quad c^{\prime} \boldsymbol{U}_{2} \boldsymbol{z}$
s.t $\quad \boldsymbol{U}_{2} \boldsymbol{z} \geq-\boldsymbol{x}^{0}$ $z \in \mathcal{Z}^{n-m}$.

- Different bases give rise to alternative reformulations

$$
\begin{aligned}
\max & c^{\prime} \overline{\boldsymbol{B}} \boldsymbol{z} \\
\text { s.t. } & \overline{\boldsymbol{B}} \boldsymbol{z} \geq-\boldsymbol{x}^{0} \\
& \boldsymbol{z} \in \mathcal{Z}^{n-m} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

