Lecture 14: Algebraic Geometry I

Today...

- 0/1-integer programming and systems of polynomial equations
- The division algorithm for polynomials of one variable
- Multivariate polynomials
- Ideals and affine varieties
- A division algorithm for multivariate polynomials
- Dickson's Lemma for monomial ideals
- Hilbert Basis Theorem
- Gröbner bases

0/1-Integer Programming Feasibility

- Normally,

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & =b_{i} \\
x_{j} & \in\{0,1\} \\
& i=1, \ldots m \\
& j=1, \ldots, n
\end{aligned}
$$

- Equivalently,

$$
\left.\begin{array}{rlr}
\sum_{j=1}^{n} a_{i j} x_{j}-b_{i} & =0 & i
\end{array}\right)=1, \ldots m
$$

- Motivates study of systems of polynomial equations

Refresher: Polynomials of One Variable

Some basics:

- Let $f=a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m}$, where $a_{0} \neq 0$.
- We call m the degree of f, written $m=\operatorname{deg}(f)$.
- We say $a_{0} x^{m}$ is the leading term of f, written $\mathrm{LT}(f)=a_{0} x^{m}$.
- For example, if $f=2 x^{3}-4 x+3$, then $\operatorname{deg}(f)=3$ and $\operatorname{LT}(f)=2 x^{3}$.
- If f and g are nonzero polynomials, then

$$
\operatorname{deg}(f) \leq \operatorname{deg}(g) \Longleftrightarrow \operatorname{LT}(f) \text { divides } \operatorname{LT}(g)
$$

The Division Algorithm:
In: g, f
Out: q, r such that $f=q g+r$ and $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$

1. $q:=0 ; r:=f$
2. WHILE $r \neq 0$ AND LT (g) divides $\mathrm{LT}(r)$ DO
3. $q:=q+\operatorname{LT}(r) / \operatorname{LT}(g)$
4. $\quad r:=r-(\operatorname{LT}(r) / \operatorname{LT}(g)) g$

Polynomials of More than One Variable

Fields:

- A field consists of a set k and two binary operations "." and "+" which satisfy the following conditions:
$-(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$,
$-a+b=b+a$ and $a \cdot b=b \cdot a$,
$-a \cdot(b+c)=a \cdot b+a \cdot c$,
- there are $0,1 \in k$ such that $a+0=a \cdot 1=a$,
- given $a \in k$ there is $b \in k$ such that $a+b=0$,
- given $a \in k, a \neq 0$, there is $c \in k$ such that $a \cdot c=1$.
- Examples include \mathbb{Q}, \mathbb{R}, and \mathbb{C}.

Monomials:

- A monomial in x_{1}, \ldots, x_{n} is a product of the form

$$
x_{1}^{\alpha_{1}} \cdot x_{2}^{\alpha_{2}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}
$$

with $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Z}_{+}$.

- We also let $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and set

$$
x^{\alpha}:=x_{1}^{\alpha_{1}} \cdot x_{2}^{\alpha_{2}} \cdot \ldots \cdot x_{n}^{\alpha_{n}} .
$$

- The total degree of x^{α} is $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$.

Polynomials:

- A polynomial in x_{1}, \ldots, x_{n} is a finite linear combination of monomials,

$$
f=\sum_{\alpha \in S} a_{\alpha} x^{\alpha}
$$

where $a_{\alpha} \in k$ for all $\alpha \in S$, and $S \subseteq \mathbb{Z}_{+}^{n}$ is finite.

- The set of all polynomials in x_{1}, \ldots, x_{n} with coefficients in k is denoted by $k\left[x_{1}, \ldots, x_{n}\right]$.
- We call a_{α} the coefficient of the monomial x^{α}.
- If $a_{\alpha} \neq 0$, then $a_{\alpha} x^{\alpha}$ is a term of f.
- The total degree of $f, \operatorname{deg}(f)$, is the maximum $|\alpha|$ such that $a_{\alpha} \neq 0$.

Example:

- $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$
- Four terms, total degree six
- Two terms of max total degree, which cannot happen in one variable
- What is the leading term?

Orderings on the Monomials in $k\left[x_{1}, \ldots, x_{n}\right]$

- For the division algorithm on polynomials in one variable, $\cdots>x^{m+1}>x^{m}>\cdots>x^{2}>$ $x>1$.
- In Gaussian elimination for systems of linear equations, $x_{1}>x_{2}>\cdots>x_{n}$.
- Note that there is a one-to-one correspondence between the monomials in $k\left[x_{1}, \ldots, x_{n}\right]$ and \mathbb{Z}_{+}^{n}.
- A monomial ordering on $k\left[x_{1}, \ldots, x_{n}\right]$ is any relation $>$ on \mathbb{Z}_{+}^{n} that satisfies

1. $>$ is a total ordering,
2. if $\alpha>\beta$ and $\gamma \in \mathbb{Z}_{+}^{n}$, then $\alpha+\gamma>\beta+\gamma$,
3. every nonempty subset of \mathbb{Z}_{+}^{n} has a smallest element under $>$.

Examples of Monomial Orderings

- Lex Order: For $\alpha, \beta \in \mathbb{Z}_{+}^{n}, \alpha>_{\text {lex }} \beta$ if the left-most nonzero entry of $\alpha-\beta$ is positive. We write $x^{\alpha}>_{\text {lex }} x^{\beta}$ if $\alpha>_{\text {lex }} \beta$.
- For example, $(1,2,0)>_{\text {lex }}(0,3,4)$ and $(3,2,4)>_{\text {lex }}(3,2,1)$.
- Also, $x_{1}>_{\text {lex }} x_{2}^{5} x_{3}^{3}$.
- Graded Lex Order: For $\alpha, \beta \in \mathbb{Z}_{+}^{n}, \alpha>_{\text {grlex }} \beta$ if $|\alpha|>|\beta|$ or $|\alpha|=|\beta|$ and $\alpha>_{\text {lex }} \beta$.
- For example, $(1,2,3)>_{\text {grlex }}(3,2,0)$ and $(1,2,4)>_{\text {grlex }}(1,1,5)$.

Further Definitions

Let $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$ be a nonzero polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$ and let $>$ be a monomial order.

- The multidegree of f is

$$
\operatorname{multideg}(f):=\underset{>}{\max }\left\{\alpha \in \mathbb{Z}_{+}^{n}: a_{\alpha} \neq 0\right\}
$$

- The leading coefficient of f is

$$
\mathrm{LC}(f):=a_{\text {multideg }(f)} .
$$

- The leading monomial of f is

$$
\operatorname{LM}(f):=x^{\operatorname{multideg}(f)} .
$$

- The leading term of f is

$$
\operatorname{LT}(f):=\operatorname{LC}(f) \cdot \operatorname{LM}(f)
$$

Example

Let $f=4 x y^{2} z+4 z^{2}-5 x^{3}+7 x^{2} z^{2}$ and let $>$ denote the lex order. Then

$$
\begin{aligned}
\operatorname{multideg}(f) & =(3,0,0), \\
\mathrm{LC}(f) & =-5, \\
\mathrm{LM}(f) & =x^{3} \\
\mathrm{LT}(f) & =-5 x^{3} .
\end{aligned}
$$

The Basic Algebraic Object of this Lecture

- A subset $I \subseteq k\left[x_{1}, \ldots x_{n}\right]$ is an ideal if it satisfies:

1. $0 \in I$,
2. if $f, g \in I$, then $f+g \in I$,
3. if $f \in I$ and $h \in k\left[x_{1}, \ldots x_{n}\right]$, then $h f \in I$.

- Let $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots x_{n}\right]$. Then

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle:=\left\{\sum_{i=1}^{s} h_{i} f_{i}: h_{1}, \ldots, h_{s} \in k\left[x_{1}, \ldots x_{n}\right]\right\}
$$

is an ideal of $k\left[x_{1}, \ldots x_{n}\right]$. (We call it the ideal generated by f_{1}, \ldots, f_{s}.)

- An ideal I is finitely generated if $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, and we say that f_{1}, \ldots, f_{s} are a basis of I.

Polynomial Equations

Given $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots x_{n}\right]$, we get the system of equations

$$
f_{1}=0, \ldots, f_{s}=0 .
$$

If we multiply the first equation by h_{1}, the second one by h_{2}, and so on, we obtain

$$
h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{s} f_{s}=0
$$

which is a consequence of the original system.
Thus, we can think of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ as consisting of all "polynomial consequences" of $f_{1}=f_{2}=$ $\cdots=f_{s}=0$.

- Let $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots x_{n}\right]$. Then we set

$$
V\left(f_{1}, \ldots, f_{s}\right):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n}: f_{i}\left(a_{1}, \ldots, a_{n}\right)=0, i=1, \ldots, s\right\}
$$

and call $V\left(f_{1}, \ldots, f_{s}\right)$ an affine variety.

- If $\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle$, then $V\left(f_{1}, \ldots, f_{s}\right)=V\left(g_{1}, \ldots, g_{t}\right)$.
- Let $V \subseteq k^{n}$ be an affine variety. Then we set

$$
I(V):=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in V\right\} .
$$

- If V is an affine variety, then $I(V)$ is an ideal.

Driving Questions

- Does every ideal have a finite generating set?
- Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, is $f \in I$?
- Find all solutions in k^{n} of a system of polynomial equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{s}\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

- Find a "nice" basis for $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

A Division Algorithm in $k\left[x_{1}, \ldots, x_{n}\right]$

- Goal: Divide f by f_{1}, \ldots, f_{s}.
- Example 1: Divide $f=x y^{2}+1$ by $f_{1}=x y+1$ and $f_{2}=y+1$, using lex order with $x>y$. This leads to

$$
x y^{2}+1=y \cdot(x y+1)+(-1) \cdot(y+1)+2 .
$$

- Example 2a: Divide $f=x^{2} y+x y^{2}+y^{2}$ by $f_{1}=x y-1$ and $f_{2}=y^{2}-1$, using lex order with $x>y$. This eventually leads to

$$
x^{2} y+x y^{2}+y^{2}=(x+y) \cdot(x y-1)+1 \cdot\left(y^{2}-1\right)+x+y+1 .
$$

Theorem 1. Fix a monomial order on \mathbb{Z}_{+}^{n}, and let $\left(f_{1}, \ldots, f_{s}\right)$ be an ordered tuple of polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then every $f \in k\left[x_{1}, \ldots, x_{n}\right]$ can be written as

$$
f=a_{1}+\cdots a_{s} f_{s}+r
$$

where $a_{i}, r \in k\left[x_{1}, \ldots, x_{n}\right]$, and either $r=0$ or r is a linear combination, with coefficients in k, of monomials, none of which is divisible by any of $L T\left(f_{1}\right), \ldots, L T\left(f_{s}\right)$.

We call r a remainder of f on division by $\left(f_{1}, \ldots, f_{s}\right)$. If $a_{i} f_{i} \neq 0$, then

$$
\operatorname{multideg}(f) \geq \text { multideg }\left(a_{i} f_{i}\right)
$$

1. $a_{1}:=0 ; \ldots, a_{s}:=0 ; r:=0$
2. $p:=f$
3. WHILE $p \neq 0 \mathrm{DO}$
4. $\quad i:=1$
5. WHILE $i \leq s$ AND no division occurred DO
6. $\quad \operatorname{IF} \operatorname{LT}\left(f_{i}\right)$ divides $\operatorname{LT}(p)$ THEN
7. $a_{i}:=a_{i}+\operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right)$
8. $p:=p-\left(\operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right)\right) f_{i}$
9. ELSE
10. $\quad i:=i+1$
11. IF no division occured THEN
12. $r:=r+\operatorname{LT}(p)$
13. $p:=p-\operatorname{LT}(p)$

More Examples

- Example 2b: Divide $f=x^{2} y+x y^{2}+y^{2}$ by $f_{1}=y^{2}-1$ and $f_{2}=x y-1$, using lex order with $x>y$. This leads to

$$
x^{2} y+x y^{2}+y^{2}=(x+1) \cdot\left(y^{2}-1\right)+x \cdot(x y-1)+2 x+1
$$

- The remainder is different from the one in Example 2a!
- Example 3a: Divide $f=x y^{2}-x$ by $f_{1}=x y+1$ and $f_{2}=y^{2}-1$ with the lex order. The result is

$$
x y^{2}-x=y \cdot(x y+1)+0 \cdot\left(y^{2}-1\right)+(-x-y)
$$

- Example 3b: Divide $f=x y^{2}-x$ by $f_{1}=y^{2}-1$ and $f_{2}=x y+1$ with the lex order. The result is

$$
x y^{2}-x=x \cdot\left(y^{2}-1\right)+0 \cdot(x y+1)+0
$$

- The second calculation shows $f \in\left\langle f_{1}, f_{2}\right\rangle$, but the first does not!

Monomial Ideals

- An ideal I is a monomial ideal if there is $A \subseteq \mathbb{Z}_{+}^{n}$ such that I consists of all finite sums $\sum_{\alpha \in A} h_{\alpha} x^{\alpha}$. We write $I=\left\langle x^{\alpha}: \alpha \in A\right\rangle$.
- Let $I=\left\langle x^{\alpha}: \alpha \in A\right\rangle$. Then $x^{\beta} \in I$ iff x^{β} is divisible by x^{α} for some $\alpha \in A$.
- x^{β} is divisible by x^{α} iff $\beta=\alpha+\gamma$ for some $\gamma \in \mathbb{Z}_{+}^{n}$. Thus,

$$
\alpha+\mathbb{Z}_{+}^{n}
$$

consists of the exponents of all monomials divisible by x^{α}.

- If I is a monomial ideal, then $f \in I$ iff every term of f lies in I.

Dickson's Lemma

- Let $A \subseteq \mathbb{Z}_{+}^{n}$. Then

$$
\bigcup_{\alpha \in A}\left(\alpha+\mathbb{Z}_{+}^{n}\right)
$$

can be expressed as the union of a finite subset of the $\alpha+\mathbb{Z}_{+}^{n}$.

- A monomial ideal $I=\left\langle x^{\alpha}: \alpha \in A\right\rangle$ can be written in the form $I=\left\langle x^{\alpha(1)}, \ldots, x^{\alpha(s)}\right\rangle$, where $\alpha(1), \ldots, \alpha(s) \in A$.

Hilbert Basis Theorem: Preliminaries

Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal other than $\{0\}$.

- Let $\mathrm{LT}(I)=$ the set of leading terms of elements in I.
- $\langle\mathrm{LT}(I)\rangle$ is a monomial ideal.
- There are $g_{1}, \ldots, g_{s} \in I$ such that

$$
\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle .
$$

Hilbert Basis Theorem

Theorem 2 (Hilbert 1888). Every ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ has a finite generating set. That is, $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ for some $g_{1}, \ldots, g_{s} \in I$.

Hilbert Basis Theorem: Proof

- Let $I \neq\{0\}$. Recall that $\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$.
- Claim: $\langle I\rangle=\left\langle g_{1}, \ldots, g_{s}\right\rangle$.
- Let $f \in I$. If we divide f by g_{1}, \ldots, g_{s}, we get

$$
f=a_{1} g_{1}+\cdots+a_{s} g_{s}+r
$$

where no term of r is divisible by any of $\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)$.

- Claim: $r=0$.
- Suppose $r \neq 0$. Note that $r \in I$.
- Hence, $\operatorname{LT}(r) \in\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{s}\right)\right\rangle$.
- So $\operatorname{LT}(r)$ must be divisible by some $\operatorname{LT}\left(g_{i}\right)$. Contradiction!
- Thus, $f=a_{1} g_{1}+\cdots+a_{s} g_{s}$, which shows $I \subseteq\left\langle g_{1}, \ldots, g_{s}\right\rangle$.

Gröbner Bases

Fix a monomial order.

- A subset $\left\{g_{1}, \ldots, g_{s}\right\}$ of an ideal I is called a Gröbner basis if

$$
\langle\mathrm{LT}(I)\rangle=\left\langle\mathrm{LT}\left(g_{1}\right), \ldots, \mathrm{LT}\left(g_{s}\right)\right\rangle .
$$

- Equivalently, $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis of I iff the leading term of any element in I is divisible by one of the $\operatorname{LT}\left(g_{i}\right)$.
- Note that every ideal $I \neq\{0\}$ has a Gröbner basis. Moreover, any Gröbner basis of I is a basis of I.

Next Time

- Properties of Gröbner bases
- Computation of Gröbner bases (Buchberger's Algorithm)
- Solving 0/1-integer programs
- Solving (general) integer programs

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

