Lecture 14: Algebraic Geometry I

Today...

- 0/1-integer programming and systems of polynomial equations
- The division algorithm for polynomials of one variable
- Multivariate polynomials
- Ideals and affine varieties
- A division algorithm for multivariate polynomials
- Dickson's Lemma for monomial ideals
- Hilbert Basis Theorem
- Gröbner bases

0/1-Integer Programming Feasibility

• Normally,

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \qquad \qquad i = 1, \dots m$$
$$x_j \in \{0, 1\} \qquad \qquad j = 1, \dots, n$$

• Equivalently,

$$\sum_{j=1}^{n} a_{ij} x_j - b_i = 0 \qquad i = 1, \dots m$$
$$x_j^2 - x_j = 0 \qquad j = 1, \dots, n$$

• Motivates study of systems of polynomial equations

Refresher: Polynomials of One Variable

Some basics:

- Let $f = a_0 x^m + a_1 x^{m-1} + \dots + a_m$, where $a_0 \neq 0$.
- We call m the *degree* of f, written $m = \deg(f)$.
- We say $a_0 x^m$ is the *leading term* of f, written $LT(f) = a_0 x^m$.
- For example, if $f = 2x^3 4x + 3$, then $\deg(f) = 3$ and $\operatorname{LT}(f) = 2x^3$.

• If f and g are nonzero polynomials, then

 $\deg(f) \leq \deg(g) \iff \operatorname{LT}(f)$ divides $\operatorname{LT}(g)$.

The Division Algorithm:

In: g, f

Out: q, r such that f = q g + r and r = 0 or $\deg(r) < \deg(g)$

- 1. q := 0; r := f
- 2. WHILE $r \neq 0$ AND LT(g) divides LT(r) DO
- 3. q := q + LT(r)/LT(g)
- 4. $r := r (\mathrm{LT}(r)/\mathrm{LT}(g))g$

Polynomials of More than One Variable

Fields:

- A *field* consists of a set k and two binary operations "." and "+" which satisfy the following conditions:
 - -(a+b) + c = a + (b+c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
 - -a+b=b+a and $a \cdot b=b \cdot a$,
 - $-a \cdot (b+c) = a \cdot b + a \cdot c,$
 - there are $0, 1 \in k$ such that $a + 0 = a \cdot 1 = a$,
 - given $a \in k$ there is $b \in k$ such that a + b = 0,
 - given $a \in k$, $a \neq 0$, there is $c \in k$ such that $a \cdot c = 1$.
- Examples include \mathbb{Q} , \mathbb{R} , and \mathbb{C} .

Monomials:

• A monomial in x_1, \ldots, x_n is a product of the form

$$x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot \ldots \cdot x_n^{\alpha_n},$$

with $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}_+$.

• We also let $\alpha := (\alpha_1, \ldots, \alpha_n)$ and set

$$x^{\alpha} := x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot \ldots \cdot x_n^{\alpha_n}.$$

• The total degree of x^{α} is $|\alpha| := \alpha_1 + \cdots + \alpha_n$.

Polynomials:

• A polynomial in x_1, \ldots, x_n is a finite linear combination of monomials,

$$f = \sum_{\alpha \in S} a_{\alpha} x^{\alpha}$$

where $a_{\alpha} \in k$ for all $\alpha \in S$, and $S \subseteq \mathbb{Z}_{+}^{n}$ is finite.

- The set of all polynomials in x_1, \ldots, x_n with coefficients in k is denoted by $k[x_1, \ldots, x_n]$.
- We call a_{α} the *coefficient* of the monomial x^{α} .
- If $a_{\alpha} \neq 0$, then $a_{\alpha}x^{\alpha}$ is a term of f.
- The total degree of f, deg(f), is the maximum $|\alpha|$ such that $a_{\alpha} \neq 0$.

Example:

- $f = 2x^3y^2z + \frac{3}{2}y^3z^3 3xyz + y^2$
- Four terms, total degree six
- Two terms of max total degree, which cannot happen in one variable
- What is the leading term?

Orderings on the Monomials in $k[x_1, \ldots, x_n]$

- For the division algorithm on polynomials in one variable, $\cdots > x^{m+1} > x^m > \cdots > x^2 > x > 1$.
- In Gaussian elimination for systems of linear equations, $x_1 > x_2 > \cdots > x_n$.
- Note that there is a one-to-one correspondence between the monomials in $k[x_1, \ldots, x_n]$ and \mathbb{Z}_+^n .
- A monomial ordering on $k[x_1, \ldots, x_n]$ is any relation > on \mathbb{Z}^n_+ that satisfies
 - 1. >is a total ordering,
 - 2. if $\alpha > \beta$ and $\gamma \in \mathbb{Z}_+^n$, then $\alpha + \gamma > \beta + \gamma$,
 - 3. every nonempty subset of \mathbb{Z}_+^n has a smallest element under >.

Examples of Monomial Orderings

- Lex Order: For $\alpha, \beta \in \mathbb{Z}^n_+$, $\alpha >_{\text{lex}} \beta$ if the left-most nonzero entry of $\alpha \beta$ is positive. We write $x^{\alpha} >_{\text{lex}} x^{\beta}$ if $\alpha >_{\text{lex}} \beta$.
 - For example, $(1, 2, 0) >_{\text{lex}} (0, 3, 4)$ and $(3, 2, 4) >_{\text{lex}} (3, 2, 1)$.
 - Also, $x_1 >_{\text{lex}} x_2^5 x_3^3$.
- Graded Lex Order: For $\alpha, \beta \in \mathbb{Z}_+^n$, $\alpha >_{\text{grlex}} \beta$ if $|\alpha| > |\beta|$ or $|\alpha| = |\beta|$ and $\alpha >_{\text{lex}} \beta$.
 - For example, $(1, 2, 3) >_{grlex} (3, 2, 0)$ and $(1, 2, 4) >_{grlex} (1, 1, 5)$.

Further Definitions

Let $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$ be a nonzero polynomial in $k[x_1, \ldots, x_n]$ and let > be a monomial order.

• The multidegree of f is

$$\operatorname{multideg}(f) := \max\{\alpha \in \mathbb{Z}^n_+ : a_\alpha \neq 0\}$$

• The leading coefficient of f is

$$LC(f) := a_{\text{multideg}(f)}$$

• The *leading monomial* of f is

$$LM(f) := x^{\operatorname{multideg}(f)}$$

• The *leading term* of f is

$$LT(f) := LC(f) \cdot LM(f).$$

Example

Let $f = 4xy^2z + 4z^2 - 5x^3 + 7x^2z^2$ and let > denote the lex order. Then

multideg
$$(f) = (3, 0, 0),$$

 $LC(f) = -5,$
 $LM(f) = x^3$
 $LT(f) = -5x^3.$

The Basic Algebraic Object of this Lecture

- A subset $I \subseteq k[x_1, \dots, x_n]$ is an *ideal* if it satisfies:
 - 1. $0 \in I$,
 - 2. if $f, g \in I$, then $f + g \in I$,
 - 3. if $f \in I$ and $h \in k[x_1, \ldots x_n]$, then $h f \in I$.
- Let $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$. Then

$$\langle f_1, \dots, f_s \rangle := \left\{ \sum_{i=1}^s h_i f_i : h_1, \dots, h_s \in k[x_1, \dots, x_n] \right\}$$

is an ideal of $k[x_1, \ldots, x_n]$. (We call it the ideal generated by f_1, \ldots, f_s .)

• An ideal I is finitely generated if $I = \langle f_1, \ldots, f_s \rangle$, and we say that f_1, \ldots, f_s are a basis of I.

Polynomial Equations

Given $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$, we get the system of equations

$$f_1=0,\ldots,f_s=0$$

If we multiply the first equation by h_1 , the second one by h_2 , and so on, we obtain

$$h_1 f_1 + h_2 f_2 + \dots + h_s f_s = 0,$$

which is a consequence of the original system.

Thus, we can think of $\langle f_1, \ldots, f_s \rangle$ as consisting of all "polynomial consequences" of $f_1 = f_2 = \cdots = f_s = 0$.

• Let $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$. Then we set

$$V(f_1, \dots, f_s) := \{ (a_1, \dots, a_n) \in k^n : f_i(a_1, \dots, a_n) = 0, i = 1, \dots, s \}$$

and call $V(f_1, \ldots, f_s)$ an affine variety.

- If $\langle f_1, \ldots, f_s \rangle = \langle g_1, \ldots, g_t \rangle$, then $V(f_1, \ldots, f_s) = V(g_1, \ldots, g_t)$.
- Let $V \subseteq k^n$ be an affine variety. Then we set

$$I(V) := \{ f \in k[x_1, \dots, x_n] : f(a_1, \dots, a_n) = 0 \text{ for all } (a_1, \dots, a_n) \in V \}.$$

• If V is an affine variety, then I(V) is an ideal.

Driving Questions

- Does every ideal have a finite generating set?
- Given $f \in k[x_1, \ldots, x_n]$ and $I = \langle f_1, \ldots, f_s \rangle$, is $f \in I$?
- Find all solutions in k^n of a system of polynomial equations

$$f_1(x_1,...,x_n) = \cdots = f_s(x_1,...,x_n) = 0.$$

• Find a "nice" basis for $\langle f_1, \ldots, f_s \rangle$.

A Division Algorithm in $k[x_1, \ldots, x_n]$

- Goal: Divide f by f_1, \ldots, f_s .
- Example 1: Divide $f = xy^2 + 1$ by $f_1 = xy + 1$ and $f_2 = y + 1$, using lex order with x > y. This leads to

$$xy^{2} + 1 = y \cdot (xy + 1) + (-1) \cdot (y + 1) + 2$$

• Example 2a: Divide $f = x^2y + xy^2 + y^2$ by $f_1 = xy - 1$ and $f_2 = y^2 - 1$, using lex order with x > y. This eventually leads to

$$x^{2}y + xy^{2} + y^{2} = (x+y) \cdot (xy-1) + 1 \cdot (y^{2}-1) + x + y + 1.$$

Theorem 1. Fix a monomial order on \mathbb{Z}_+^n , and let (f_1, \ldots, f_s) be an ordered tuple of polynomials in $k[x_1, \ldots, x_n]$. Then every $f \in k[x_1, \ldots, x_n]$ can be written as

$$f = a_1 + \cdots + a_s f_s + r,$$

where $a_i, r \in k[x_1, \ldots, x_n]$, and either r = 0 or r is a linear combination, with coefficients in k, of monomials, none of which is divisible by any of $LT(f_1), \ldots, LT(f_s)$.

We call r a remainder of f on division by (f_1, \ldots, f_s) . If $a_i f_i \neq 0$, then

 $multideg(f) \ge multideg(a_i f_i).$

1.
$$a_1 := 0; \ldots, a_s := 0; r := 0$$

2.
$$p := f$$

3. WHILE $p \neq 0$ DO

4. i := 1

5. WHILE $i \leq s$ AND no division occurred DO

6. IF
$$LT(f_i)$$
 divides $LT(p)$ THEN

7.
$$a_i := a_i + \mathrm{LT}(p) / \mathrm{LT}(f_i)$$

8.
$$p := p - (\mathrm{LT}(p)/\mathrm{LT}(f_i))f_i$$

1

9. ELSE

$$10. i := i +$$

11. IF no division occured THEN

12.
$$r := r + \mathrm{LT}(p)$$

13. p := p - LT(p)

More Examples

• Example 2b: Divide $f = x^2y + xy^2 + y^2$ by $f_1 = y^2 - 1$ and $f_2 = xy - 1$, using lex order with x > y. This leads to

$$x^{2}y + xy^{2} + y^{2} = (x+1) \cdot (y^{2} - 1) + x \cdot (xy - 1) + 2x + 1.$$

- The remainder is different from the one in Example 2a!
- Example 3a: Divide $f = xy^2 x$ by $f_1 = xy + 1$ and $f_2 = y^2 1$ with the lex order. The result is

$$xy^{2} - x = y \cdot (xy + 1) + 0 \cdot (y^{2} - 1) + (-x - y).$$

• Example 3b: Divide $f = xy^2 - x$ by $f_1 = y^2 - 1$ and $f_2 = xy + 1$ with the lex order. The result is

$$xy^{2} - x = x \cdot (y^{2} - 1) + 0 \cdot (xy + 1) + 0$$

• The second calculation shows $f \in \langle f_1, f_2 \rangle$, but the first does not!

Monomial Ideals

- An ideal I is a monomial ideal if there is $A \subseteq \mathbb{Z}^n_+$ such that I consists of all finite sums $\sum_{\alpha \in A} h_\alpha x^\alpha$. We write $I = \langle x^\alpha : \alpha \in A \rangle$.
- Let $I = \langle x^{\alpha} : \alpha \in A \rangle$. Then $x^{\beta} \in I$ iff x^{β} is divisible by x^{α} for some $\alpha \in A$.
- x^{β} is divisible by x^{α} iff $\beta = \alpha + \gamma$ for some $\gamma \in \mathbb{Z}_{+}^{n}$. Thus,

$$\alpha + \mathbb{Z}^n_+$$

consists of the exponents of all monomials divisible by x^{α} .

• If I is a monomial ideal, then $f \in I$ iff every term of f lies in I.

Dickson's Lemma

• Let $A \subseteq \mathbb{Z}_+^n$. Then

$$\bigcup_{\alpha \in A} (\alpha + \mathbb{Z}^n_+)$$

can be expressed as the union of a finite subset of the $\alpha + \mathbb{Z}_+^n$.

• A monomial ideal $I = \langle x^{\alpha} : \alpha \in A \rangle$ can be written in the form $I = \langle x^{\alpha(1)}, \ldots, x^{\alpha(s)} \rangle$, where $\alpha(1), \ldots, \alpha(s) \in A$.

Hilbert Basis Theorem: Preliminaries

Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal other than $\{0\}$.

- Let LT(I) = the set of leading terms of elements in I.
- $\langle LT(I) \rangle$ is a monomial ideal.
- There are $g_1, \ldots, g_s \in I$ such that

$$\langle \mathrm{LT}(I) \rangle = \langle \mathrm{LT}(g_1), \dots, \mathrm{LT}(g_s) \rangle.$$

Hilbert Basis Theorem

Theorem 2 (Hilbert 1888). Every ideal $I \subseteq k[x_1, \ldots, x_n]$ has a finite generating set. That is, $I = \langle g_1, \ldots, g_s \rangle$ for some $g_1, \ldots, g_s \in I$.

Hilbert Basis Theorem: Proof

- Let $I \neq \{0\}$. Recall that $\langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_s) \rangle$.
- Claim: $\langle I \rangle = \langle g_1, \ldots, g_s \rangle$.

• Let $f \in I$. If we divide f by g_1, \ldots, g_s , we get

$$f = a_1 g_1 + \dots + a_s g_s + r,$$

where no term of r is divisible by any of $LT(g_1), \ldots, LT(g_s)$.

- Claim: r = 0.
- Suppose $r \neq 0$. Note that $r \in I$.
- Hence, $LT(r) \in \langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_s) \rangle$.
- So LT(r) must be divisible by some $LT(g_i)$. Contradiction!
- Thus, $f = a_1g_1 + \cdots + a_sg_s$, which shows $I \subseteq \langle g_1, \ldots, g_s \rangle$.

Gröbner Bases

Fix a monomial order.

• A subset $\{g_1, \ldots, g_s\}$ of an ideal *I* is called a *Gröbner basis* if

$$\langle \mathrm{LT}(I) \rangle = \langle \mathrm{LT}(g_1), \dots, \mathrm{LT}(g_s) \rangle.$$

- Equivalently, $\{g_1, \ldots, g_s\}$ is a Gröbner basis of I iff the leading term of any element in I is divisible by one of the $LT(g_i)$.
- Note that every ideal $I \neq \{0\}$ has a Gröbner basis. Moreover, any Gröbner basis of I is a basis of I.

Next Time

- Properties of Gröbner bases
- Computation of Gröbner bases (Buchberger's Algorithm)
- Solving 0/1-integer programs
- Solving (general) integer programs

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.