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Geometry 

Warm-up: A Theorem by Edmonds and Giles 

Theorem 1 (Edmonds and Giles 1977). A rational polyhedron P is integral if and only if for all 
integral vectors w the optimal value of max{wx : x ∈ P } is integer. 

Proof (for polytopes): 

•	 Let v be a vertex of P , and let w ∈ Zn be such that v is the unique optimal solution to 
max{wx : x ∈ P }. 

•	 By multiplying w by a large positive integer if necessary, we may assume that wv > wu+u1−v1 

for all vertices u of P other than v. 

•	 If we let w := (w1 + 1, w2, . . . , wn), then v is an optimal solution to max{wx : x ∈ P }. 

•	 So wv, = wv + v1, and both wv and wv are integer. 

•	 Thus v1 is an integer. 

•	 Repeat for the remaining components of v. 

Totally Unimodular Matrices 

•	 Recall that totally unimodular matrices are exactly those integral matrices A for which the 
polyhedron {x ≥ 0 : Ax ≤ b} is integral for each integral vector b. 

•	 This concept has led to a number of important results by virtue of the LP-duality equation 

max{wx : x ≥ 0, Ax ≤ b} = min{yb : yA ≥ w}. 

For instance, . . . 

•	 König’s Theorem: The maximum cardinality of a stable set in a bipartite graph is equal to 
the minimum number of edges needed to cover all nodes. 

•	 König-Egerváry’s Theorem: The maximum cardinality of a matching in a bipartite graph is 
equal to the minimum cardinality of a set of nodes intersecting each edge. 

•	 The Max-Flow-Min-Cut Theorem: The maximum value of an s-t flow is equal to the minimum 
capacity of any s-t cut. 

. . . • 
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Total Dual Integrality 

•	 In this lecture, we fix A and b and study integer polyhedra. 

Consider the LP-duality equation


max{wx : Ax ≤ b} = min{yb : yA = w, y ≥ 0}.


•	 If b is integral and the minimum has an integral optimal solution y for each integral vector 
w, then the maximum also has an integral optimum solution, for each such w. 

•	 A rational system Ax ≤ b is called totally dual integral (TDI) if the minimum has an integral 
optimum solution y for each integral vector w (for which the optimum is finite). 

• Thus, if Ax ≤ b is TDI and b is integral, then P = {x : Ax ≤ b} is integral.


Total dual integrality is not a property of polyhedra. The systems
� � � � � � 
1 1 x1 0 
1 −1 x2 

≤ 
0 

and	 ⎛ ⎞ ⎛ ⎞ 
1 1 � � 0
⎝ 1 ⎠ x1 ⎝ 0 ⎠
−1 

x2 
≤


1 0	 0 

define the same polyhedron, but the second one is TDI, whereas the first one is not. 

TDI Representations 

Theorem 2 (Giles and Pulleyblank 1979). Let P be a rational polyhedron. There exists a totally 
dual integral system Ax ≤ b, with A integral, such that P = {x : Ax ≤ b}. Furthermore, if P is an 
integral polyhedron, then b can be chosen to be integral. 

Integral Hilbert Bases 
Let C be a rational polyhedral cone. A set of integral vectors {a1, . . . , at} is an integral Hilbert 
basis of C if each integral vector in C is a nonnegative integral combination of a1, . . . , at. 

Theorem 3. Each rational polyhedral cone C is generated by an integral Hilbert basis. (If C is 
pointed, there is a unique minimal integral Hilbert basis.) 

Integral Hilbert Bases 
Proof: 

•	 Let c1, . . . , ck be primitive integral vectors that generate C. 

•	 Consider Z := {λ1c1 + · · · + λkck : 0 ≤ λi ≤ 1}. 

•	 Let H be the set of integral vectors in Z. Claim: H is a Hilbert basis.
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•	 Let c ∈ C ∩ Zn . Then c = λ1c1 + · · · + λkck, where λi ≥ 0 for all i. 

�k k

•	 Rewrite as c − �λi�ci = (λi − �λi�)ci. 
i=1 i=1 

•	 Since the LHS is integral, so is the RHS. However, the RHS belongs to Z. 

•	 So c is nonnegative integer combination of elements in H. 

Hilbert Bases and TDI Systems 

Lemma 4. Ax ≤ b is TDI if and only if for each minimal face F of P = {x : Ax ≤ b} the rows of 
A which are active in F form a Hilbert basis. 

Proof: 

•	 Assume that Ax ≤ b is TDI. Let a1, . . . , at be the rows of A active in F . 

•	 Let c be an integral vector in cone{a1, . . . , at}.


The maximum of
• 
max{cx : Ax ≤ b} = min{yb : yA = c, y ≥ 0} (1) 

is attained by each vector x in F . The minimum has an integral optimal solution y. 

•	 y has 0’s in positions corresponding to rows not active in F . 

•	 Hence, c is an integral nonnegative combination of a1, . . . , at. 

•	 For the other direction, let c ∈ Zn be such that the optima in (1) are finite. 

•	 Let F be a minimal face of P so that each vector in F attains the maximum in (1). 

•	 Let a1, . . . , at be the rows active in F . 

•	 Then c ∈ cone{a1, . . . , at}. 

•	 In particular, c = λ1a1 + · · · + λtat for certain λi ∈ Z+. 

•	 Extending (λ1, . . . , λt) with 0’s, we obtain an integral vector y ≥ 0 such that yA = c and 
yb = yAx = cx for all x ∈ F . 

•	 So y attains the minimum in (1) 
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TDI Representations 

Theorem 5 (Giles and Pulleyblank 1979). Let P be a rational polyhedron. There exists a totally 
dual integral system Ax ≤ b, with A integral, such that P = {x : Ax ≤ b}. Furthermore, if P is an 
integral polyhedron, then b can be chosen to be integral. 

Proof:


Let F be a minimal face of P .
• 

• Let CF be the normal cone of F . 

• Let a1, . . . , at be an integral Hilbert basis for CF . 

• For some x0 ∈ F , let bi := aix0. 

•	 The system ΣF of inequalities

a1x ≤ b1, . . . , atx ≤ bt


is valid for P . 

• Let Ax ≤ b be the union of all ΣF	 over all minimal faces F . 

• Ax ≤ b defines P and is TDI. 

• And if P is integral, then so is b. 

Procedure for Proving Integrality of Polyhedra 

• Find an appropriate defining system Ax ≤ b, with A and b integral. 

• Prove that Ax ≤ b is totally dual integral. 

• Conclude that {x : Ax ≤ b} is an integral polyhedron. 

An Application of Total Dual Integrality 
Recall that, if (N, I) is a matroid, then the convex hull of incidence vectors is equal to


PI = conv{x ∈ RN : x(S) ≤ r(S) for all S ⊆ N},
+ 

where r is the rank function of the matroid. 

Theorem 6 (Matroid Intersection Theorem). The convex hull of the characteristic vectors of 
common independent sets of two matroids (N, I1) and (N, I2) is precisely the set of feasible solutions 
to 

x(S) ≤ r1(S) 
x(S) ≤ r2(S) 

xj ≥ 0 

for all S ⊆ N 

for all S ⊆ N 

for all j ∈ N. 
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Proof: 

• We show that the system is TDI. 

• Consider the dual of maximizing wx over it: 

min (r1(S)yS 
1 + r2(S)yS 

2 ) 
S⊆N 

s.t. (yS 
1 + y 2 ) ≥ wj for j ∈ NS

N⊇S�j 

yS
1 , y S 

2 ≥ 0 for S ⊆ N 

• Let (y1, y2) be an optimal solution such that 

(yS 
1 + yS 

2 ))|S||N \ S| (2) 
S⊆N 

is minimized. 

• Let Fi := {S ⊆ N : yS
i > 0}, for i = 1, 2. 

• Claim: If S, T ∈ Fi, then S ⊆ T or T ⊆ S. 

• Suppose not. Choose α := min{yS
i , yT

i }. 

• Decrease yS
i and yT

i by α, and increase yS
i 
∩T and yS

i 
∪T by α. 

• Since χS + χT = χS∩T + χS∪T , (y1, y2) remains feasible. 

• Since ri(S) + ri(T ) ≥ ri(S ∩ T ) + ri(S ∪ T ), it remains optimal. 

• However, (2) decreases, contradicting the minimality assumption. 

• The constraints corresponding to F1 and F2 form a totally unimodular matrix. 

Corollary 7. 
P (I1 ∩ I2) = P (I1) ∩ P (I2) 

An Application of Hilbert bases 

• Consider max{wx : Ax = b, 0 ≤ x ≤ u}. 

• For j = 1, . . . , 2n, let Oj be the j-th orthant of Rn . 

• Let Cj := {x ∈ Oj : Ax = 0}, and let Hj be an integral Hilbert basis of Cj . 

Theorem 8 (Graver 1975). A feasible solution x is optimal if and only if for every h ∈ 
�2n 

Hj 
j=1 

the following holds: 

1. wh ≤ 0, or 

2. wh > 0 and x + h is infeasible. 
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