Geometry

Warm-up: A Theorem by Edmonds and Giles

Theorem 1 (Edmonds and Giles 1977). A rational polyhedron P is integral if and only if for all integral vectors w the optimal value of $\max \{w x: x \in P\}$ is integer.

Proof (for polytopes):

- Let v be a vertex of P, and let $w \in \mathbb{Z}^{n}$ be such that v is the unique optimal solution to $\max \{w x: x \in P\}$.
- By multiplying w by a large positive integer if necessary, we may assume that $w v>w u+u_{1}-v_{1}$ for all vertices u of P other than v.
- If we let $\bar{w}:=\left(w_{1}+1, w_{2}, \ldots, w_{n}\right)$, then v is an optimal solution to $\max \{\bar{w} x: x \in P\}$.
- So $\bar{w} v=w v+v_{1}$, and both $\bar{w} v$ and $w v$ are integer.
- Thus v_{1} is an integer.
- Repeat for the remaining components of v.

Totally Unimodular Matrices

- Recall that totally unimodular matrices are exactly those integral matrices A for which the polyhedron $\{x \geq 0: A x \leq b\}$ is integral for each integral vector b.
- This concept has led to a number of important results by virtue of the LP-duality equation

$$
\max \{w x: x \geq 0, A x \leq b\}=\min \{y b: y A \geq w\} .
$$

For instance, ...

- König's Theorem: The maximum cardinality of a stable set in a bipartite graph is equal to the minimum number of edges needed to cover all nodes.
- König-Egerváry's Theorem: The maximum cardinality of a matching in a bipartite graph is equal to the minimum cardinality of a set of nodes intersecting each edge.
- The Max-Flow-Min-Cut Theorem: The maximum value of an $s-t$ flow is equal to the minimum capacity of any s - t cut.
- ...

Total Dual Integrality

- In this lecture, we fix A and b and study integer polyhedra.

Consider the LP-duality equation

$$
\max \{w x: A x \leq b\}=\min \{y b: y A=w, y \geq 0\} .
$$

- If b is integral and the minimum has an integral optimal solution y for each integral vector w, then the maximum also has an integral optimum solution, for each such w.
- A rational system $A x \leq b$ is called totally dual integral (TDI) if the minimum has an integral optimum solution y for each integral vector w (for which the optimum is finite).
- Thus, if $A x \leq b$ is TDI and b is integral, then $P=\{x: A x \leq b\}$ is integral.

Total dual integrality is not a property of polyhedra. The systems

$$
\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\binom{ 0}{0}
$$

and

$$
\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

define the same polyhedron, but the second one is TDI, whereas the first one is not.

TDI Representations

Theorem 2 (Giles and Pulleyblank 1979). Let P be a rational polyhedron. There exists a totally dual integral system $A x \leq b$, with A integral, such that $P=\{x: A x \leq b\}$. Furthermore, if P is an integral polyhedron, then b can be chosen to be integral.

Integral Hilbert Bases

Let C be a rational polyhedral cone. A set of integral vectors $\left\{a_{1}, \ldots, a_{t}\right\}$ is an integral Hilbert basis of C if each integral vector in C is a nonnegative integral combination of a_{1}, \ldots, a_{t}.

Theorem 3. Each rational polyhedral cone C is generated by an integral Hilbert basis. (If C is pointed, there is a unique minimal integral Hilbert basis.)

Integral Hilbert Bases

Proof:

- Let c_{1}, \ldots, c_{k} be primitive integral vectors that generate C.
- Consider $Z:=\left\{\lambda_{1} c_{1}+\cdots+\lambda_{k} c_{k}: 0 \leq \lambda_{i} \leq 1\right\}$.
- Let H be the set of integral vectors in Z. Claim: H is a Hilbert basis.
- Let $c \in C \cap \mathbb{Z}^{n}$. Then $c=\lambda_{1} c_{1}+\cdots+\lambda_{k} c_{k}$, where $\lambda_{i} \geq 0$ for all i.
- Rewrite as $c-\sum_{i=1}^{k}\left\lfloor\lambda_{i}\right\rfloor c_{i}=\sum_{i=1}^{k}\left(\lambda_{i}-\left\lfloor\lambda_{i}\right\rfloor\right) c_{i}$.
- Since the LHS is integral, so is the RHS. However, the RHS belongs to Z.
- So c is nonnegative integer combination of elements in H.

Hilbert Bases and TDI Systems

Lemma 4. $A x \leq b$ is TDI if and only if for each minimal face F of $P=\{x: A x \leq b\}$ the rows of A which are active in F form a Hilbert basis.

Proof:

- Assume that $A x \leq b$ is TDI. Let a_{1}, \ldots, a_{t} be the rows of A active in F.
- Let c be an integral vector in cone $\left\{a_{1}, \ldots, a_{t}\right\}$.
- The maximum of

$$
\begin{equation*}
\max \{c x: A x \leq b\}=\min \{y b: y A=c, y \geq 0\} \tag{1}
\end{equation*}
$$

is attained by each vector x in F. The minimum has an integral optimal solution y.

- y has 0 's in positions corresponding to rows not active in F.
- Hence, c is an integral nonnegative combination of a_{1}, \ldots, a_{t}.
- For the other direction, let $c \in \mathbb{Z}^{n}$ be such that the optima in (1) are finite.
- Let F be a minimal face of P so that each vector in F attains the maximum in (1).
- Let a_{1}, \ldots, a_{t} be the rows active in F.
- Then $c \in \operatorname{cone}\left\{a_{1}, \ldots, a_{t}\right\}$.
- In particular, $c=\lambda_{1} a_{1}+\cdots+\lambda_{t} a_{t}$ for certain $\lambda_{i} \in \mathbb{Z}_{+}$.
- Extending $\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ with 0 's, we obtain an integral vector $y \geq 0$ such that $y A=c$ and $y b=y A x=c x$ for all $x \in F$.
- So y attains the minimum in (1)

TDI Representations

Theorem 5 (Giles and Pulleyblank 1979). Let P be a rational polyhedron. There exists a totally dual integral system $A x \leq b$, with A integral, such that $P=\{x: A x \leq b\}$. Furthermore, if P is an integral polyhedron, then b can be chosen to be integral.

Proof:

- Let F be a minimal face of P.
- Let C_{F} be the normal cone of F.
- Let a_{1}, \ldots, a_{t} be an integral Hilbert basis for C_{F}.
- For some $x_{0} \in F$, let $b_{i}:=a_{i} x_{0}$.
- The system Σ_{F} of inequalities

$$
a_{1} x \leq b_{1}, \ldots, a_{t} x \leq b_{t}
$$

is valid for P.

- Let $A x \leq b$ be the union of all Σ_{F} over all minimal faces F.
- $A x \leq b$ defines P and is TDI.
- And if P is integral, then so is b.

Procedure for Proving Integrality of Polyhedra

- Find an appropriate defining system $A x \leq b$, with A and b integral.
- Prove that $A x \leq b$ is totally dual integral.
- Conclude that $\{x: A x \leq b\}$ is an integral polyhedron.

An Application of Total Dual Integrality

Recall that, if (N, \mathcal{I}) is a matroid, then the convex hull of incidence vectors is equal to

$$
P_{\mathcal{I}}=\operatorname{conv}\left\{x \in \mathbb{R}_{+}^{N}: x(S) \leq r(S) \text { for all } S \subseteq N\right\}
$$

where r is the rank function of the matroid.
Theorem 6 (Matroid Intersection Theorem). The convex hull of the characteristic vectors of common independent sets of two matroids $\left(N, \mathcal{I}_{1}\right)$ and $\left(N, \mathcal{I}_{2}\right)$ is precisely the set of feasible solutions to

$$
\begin{aligned}
x(S) & \leq r_{1}(S) & & \text { for all } S \subseteq N \\
x(S) & \leq r_{2}(S) & & \text { for all } S \subseteq N \\
x_{j} & \geq 0 & & \text { for all } j \in N .
\end{aligned}
$$

Proof:

- We show that the system is TDI.
- Consider the dual of maximizing $w x$ over it:

$$
\begin{aligned}
& \min \sum_{S \subseteq N}\left(r_{1}(S) y_{S}^{1}+r_{2}(S) y_{S}^{2}\right) \\
& \text { s.t. } \sum_{N \supseteq S \ni j}\left(y_{S}^{1}+y_{S}^{2}\right) \geq w_{j} \text { for } j \in N \\
& \quad y_{S}^{1}, y_{S}^{2} \geq 0 \text { for } S \subseteq N
\end{aligned}
$$

- Let $\left(y^{1}, y^{2}\right)$ be an optimal solution such that

$$
\begin{equation*}
\left.\sum_{S \subseteq N}\left(y_{S}^{1}+y_{S}^{2}\right)\right)|S||N \backslash S| \tag{2}
\end{equation*}
$$

is minimized.

- Let $\mathcal{F}_{i}:=\left\{S \subseteq N: y_{S}^{i}>0\right\}$, for $i=1,2$.
- Claim: If $S, T \in \mathcal{F}_{i}$, then $S \subseteq T$ or $T \subseteq S$.
- Suppose not. Choose $\alpha:=\min \left\{y_{S}^{i}, y_{T}^{i}\right\}$.
- Decrease y_{S}^{i} and y_{T}^{i} by α, and increase $y_{S \cap T}^{i}$ and $y_{S \cup T}^{i}$ by α.
- Since $\chi^{S}+\chi^{T}=\chi^{S \cap T}+\chi^{S \cup T},\left(y^{1}, y^{2}\right)$ remains feasible.
- Since $r_{i}(S)+r_{i}(T) \geq r_{i}(S \cap T)+r_{i}(S \cup T)$, it remains optimal.
- However, (2) decreases, contradicting the minimality assumption.
- The constraints corresponding to \mathcal{F}_{1} and \mathcal{F}_{2} form a totally unimodular matrix.

Corollary 7.

$$
P\left(\mathcal{I}_{1} \cap \mathcal{I}_{2}\right)=P\left(\mathcal{I}_{1}\right) \cap P\left(\mathcal{I}_{2}\right)
$$

An Application of Hilbert bases

- Consider $\max \{w x: A x=b, 0 \leq x \leq u\}$.
- For $j=1, \ldots, 2^{n}$, let O_{j} be the j-th orthant of \mathbb{R}^{n}.
- Let $C^{j}:=\left\{x \in O_{j}: A x=0\right\}$, and let H^{j} be an integral Hilbert basis of C^{j}.

Theorem 8 (Graver 1975). A feasible solution x is optimal if and only if for every $h \in \bigcup_{j=1}^{2^{n}} H^{j}$ the following holds:

1. $w h \leq 0$, or
2. $w h>0$ and $x+h$ is infeasible.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

