Fall 2009

Geometry

Warm-up: A Theorem by Edmonds and Giles

Theorem 1 (Edmonds and Giles 1977). A rational polyhedron P is integral if and only if for all integral vectors w the optimal value of $\max\{wx : x \in P\}$ is integer.

Proof (for polytopes):

- Let v be a vertex of P, and let $w \in \mathbb{Z}^n$ be such that v is the unique optimal solution to $\max\{wx : x \in P\}.$
- By multiplying w by a large positive integer if necessary, we may assume that $wv > wu+u_1-v_1$ for all vertices u of P other than v.
- If we let $\overline{w} := (w_1 + 1, w_2, \dots, w_n)$, then v is an optimal solution to $\max\{\overline{w}x : x \in P\}$.
- So $\overline{w}v = wv + v_1$, and both $\overline{w}v$ and wv are integer.
- Thus v_1 is an integer.
- Repeat for the remaining components of v.

Totally Unimodular Matrices

- Recall that totally unimodular matrices are exactly those integral matrices A for which the polyhedron $\{x \ge 0 : Ax \le b\}$ is integral for each integral vector b.
- This concept has led to a number of important results by virtue of the LP-duality equation

$$\max\{wx : x \ge 0, Ax \le b\} = \min\{yb : yA \ge w\}.$$

For instance, ...

- König's Theorem: The maximum cardinality of a stable set in a bipartite graph is equal to the minimum number of edges needed to cover all nodes.
- König-Egerváry's Theorem: The maximum cardinality of a matching in a bipartite graph is equal to the minimum cardinality of a set of nodes intersecting each edge.
- The Max-Flow-Min-Cut Theorem: The maximum value of an *s*-*t* flow is equal to the minimum capacity of any *s*-*t* cut.

• ...

Total Dual Integrality

• In this lecture, we fix A and b and study integer polyhedra.

Consider the LP-duality equation

$$\max\{wx : Ax \le b\} = \min\{yb : yA = w, y \ge 0\}.$$

- If b is integral and the minimum has an integral optimal solution y for each integral vector w, then the maximum also has an integral optimum solution, for each such w.
- A rational system $Ax \leq b$ is called *totally dual integral* (TDI) if the minimum has an integral optimum solution y for each integral vector w (for which the optimum is finite).
- Thus, if $Ax \leq b$ is TDI and b is integral, then $P = \{x : Ax \leq b\}$ is integral.

Total dual integrality is not a property of polyhedra. The systems

$$\left(\begin{array}{cc}1&1\\1&-1\end{array}\right)\left(\begin{array}{c}x_1\\x_2\end{array}\right) \le \left(\begin{array}{c}0\\0\end{array}\right)$$

and

$$\left(\begin{array}{rrr}1 & 1\\1 & -1\\1 & 0\end{array}\right)\left(\begin{array}{r}x_1\\x_2\end{array}\right) \le \left(\begin{array}{r}0\\0\\0\end{array}\right)$$

define the same polyhedron, but the second one is TDI, whereas the first one is not.

TDI Representations

Theorem 2 (Giles and Pulleyblank 1979). Let P be a rational polyhedron. There exists a totally dual integral system $Ax \leq b$, with A integral, such that $P = \{x : Ax \leq b\}$. Furthermore, if P is an integral polyhedron, then b can be chosen to be integral.

Integral Hilbert Bases

Let C be a rational polyhedral cone. A set of integral vectors $\{a_1, \ldots, a_t\}$ is an *integral Hilbert* basis of C if each integral vector in C is a nonnegative integral combination of a_1, \ldots, a_t .

Theorem 3. Each rational polyhedral cone C is generated by an integral Hilbert basis. (If C is pointed, there is a unique minimal integral Hilbert basis.)

Integral Hilbert Bases

Proof:

- Let c_1, \ldots, c_k be primitive integral vectors that generate C.
- Consider $Z := \{\lambda_1 c_1 + \dots + \lambda_k c_k : 0 \le \lambda_i \le 1\}.$
- Let H be the set of integral vectors in Z. Claim: H is a Hilbert basis.

• Let $c \in C \cap \mathbb{Z}^n$. Then $c = \lambda_1 c_1 + \cdots + \lambda_k c_k$, where $\lambda_i \geq 0$ for all i.

• Rewrite as
$$c - \sum_{i=1}^{k} \lfloor \lambda_i \rfloor c_i = \sum_{i=1}^{k} (\lambda_i - \lfloor \lambda_i \rfloor) c_i$$

- Since the LHS is integral, so is the RHS. However, the RHS belongs to Z.
- So c is nonnegative integer combination of elements in H.

Hilbert Bases and TDI Systems

Lemma 4. $Ax \leq b$ is TDI if and only if for each minimal face F of $P = \{x : Ax \leq b\}$ the rows of A which are active in F form a Hilbert basis.

Proof:

- Assume that $Ax \leq b$ is TDI. Let a_1, \ldots, a_t be the rows of A active in F.
- Let c be an integral vector in $\operatorname{cone}\{a_1,\ldots,a_t\}$.
- The maximum of

$$\max\{cx : Ax \le b\} = \min\{yb : yA = c, y \ge 0\}$$

$$\tag{1}$$

is attained by each vector x in F. The minimum has an integral optimal solution y.

- y has 0's in positions corresponding to rows not active in F.
- Hence, c is an integral nonnegative combination of a_1, \ldots, a_t .
- For the other direction, let $c \in \mathbb{Z}^n$ be such that the optima in (1) are finite.
- Let F be a minimal face of P so that each vector in F attains the maximum in (1).
- Let a_1, \ldots, a_t be the rows active in F.
- Then $c \in \operatorname{cone}\{a_1, \ldots, a_t\}$.
- In particular, $c = \lambda_1 a_1 + \dots + \lambda_t a_t$ for certain $\lambda_i \in \mathbb{Z}_+$.
- Extending $(\lambda_1, \ldots, \lambda_t)$ with 0's, we obtain an integral vector $y \ge 0$ such that yA = c and yb = yAx = cx for all $x \in F$.
- So y attains the minimum in (1)

TDI Representations

Theorem 5 (Giles and Pulleyblank 1979). Let P be a rational polyhedron. There exists a totally dual integral system $Ax \leq b$, with A integral, such that $P = \{x : Ax \leq b\}$. Furthermore, if P is an integral polyhedron, then b can be chosen to be integral.

Proof:

- Let F be a minimal face of P.
- Let C_F be the normal cone of F.
- Let a_1, \ldots, a_t be an integral Hilbert basis for C_F .
- For some $x_0 \in F$, let $b_i := a_i x_0$.
- The system Σ_F of inequalities

$$a_1x \leq b_1, \ldots, a_tx \leq b_t$$

is valid for P.

- Let $Ax \leq b$ be the union of all Σ_F over all minimal faces F.
- $Ax \leq b$ defines P and is TDI.
- And if *P* is integral, then so is *b*.

Procedure for Proving Integrality of Polyhedra

- Find an appropriate defining system $Ax \leq b$, with A and b integral.
- Prove that $Ax \leq b$ is totally dual integral.
- Conclude that $\{x : Ax \leq b\}$ is an integral polyhedron.

An Application of Total Dual Integrality

Recall that, if (N, \mathcal{I}) is a matroid, then the convex hull of incidence vectors is equal to

$$P_{\mathcal{I}} = \operatorname{conv}\{x \in \mathbb{R}^N_+ : x(S) \le r(S) \text{ for all } S \subseteq N\},\$$

where r is the rank function of the matroid.

Theorem 6 (Matroid Intersection Theorem). The convex hull of the characteristic vectors of common independent sets of two matroids (N, \mathcal{I}_1) and (N, \mathcal{I}_2) is precisely the set of feasible solutions to

$x(S) \le r_1(S)$	for all $S \subseteq N$
$x(S) \le r_2(S)$	for all $S \subseteq N$
$x_j \ge 0$	for all $j \in N$.

Proof:

- We show that the system is TDI.
- Consider the dual of maximizing wx over it:

$$\min \sum_{S \subseteq N} (r_1(S)y_S^1 + r_2(S)y_S^2)$$

s.t.
$$\sum_{N \supseteq S \ni j} (y_S^1 + y_S^2) \ge w_j \text{ for } j \in N$$
$$y_S^1, y_S^2 \ge 0 \text{ for } S \subseteq N$$

• Let (y^1, y^2) be an optimal solution such that

$$\sum_{S \subseteq N} (y_S^1 + y_S^2))|S||N \setminus S| \tag{2}$$

is minimized.

- Let $\mathcal{F}_i := \{ S \subseteq N : y_S^i > 0 \}$, for i = 1, 2.
- Claim: If $S, T \in \mathcal{F}_i$, then $S \subseteq T$ or $T \subseteq S$.
- Suppose not. Choose $\alpha := \min\{y_S^i, y_T^i\}.$
- Decrease y_S^i and y_T^i by α , and increase $y_{S\cap T}^i$ and $y_{S\cup T}^i$ by α .
- Since $\chi^S + \chi^T = \chi^{S \cap T} + \chi^{S \cup T}$, (y^1, y^2) remains feasible.
- Since $r_i(S) + r_i(T) \ge r_i(S \cap T) + r_i(S \cup T)$, it remains optimal.
- However, (2) decreases, contradicting the minimality assumption.
- The constraints corresponding to \mathcal{F}_1 and \mathcal{F}_2 form a totally unimodular matrix.

Corollary 7.

$$P(\mathcal{I}_1 \cap \mathcal{I}_2) = P(\mathcal{I}_1) \cap P(\mathcal{I}_2)$$

An Application of Hilbert bases

- Consider $\max\{wx : Ax = b, 0 \le x \le u\}$.
- For $j = 1, ..., 2^n$, let O_j be the *j*-th orthant of \mathbb{R}^n .
- Let $C^j := \{x \in O_j : Ax = 0\}$, and let H^j be an integral Hilbert basis of C^j .

Theorem 8 (Graver 1975). A feasible solution x is optimal if and only if for every $h \in \bigcup_{j=1}^{2^n} H^j$ the following holds:

- 1. $wh \le 0$, or
- 2. wh > 0 and x + h is infeasible.

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.