Cutting Plane Methods I

Cutting Planes

- Consider $\max \{w x: A x \leq b, x$ integer $\}$.
- Establishing the optimality of a solution is equivalent to proving $w x \leq t$ is valid for all integral solutions of $A x \leq b$, where t is the maximum value.
- Without the integrality restriction, we could prove the validity of $w x \leq t$ with the help of LP duality.
- Our goal is to establish a similar method for integral solutions.
- Consider the linear system

$$
\begin{aligned}
2 x_{1}+3 x_{2} & \leq 27 \\
2 x_{1}-2 x_{2} & \leq 7 \\
-6 x_{1}-2 x_{2} & \leq-9 \\
-2 x_{1}-6 x_{2} & \leq-11 \\
-6 x_{1}+8 x_{2} & \leq 21
\end{aligned}
$$

- As can easily be seen, every integral solution satisfies $x_{2} \leq 5$.
- However, we cannot derive this directly with LP duality because there is a fractional vector, $(9 / 2,6)$, with $x_{2}=6$.
- Instead, let us multiply the last inequality by $1 / 2$:

$$
-3 x_{1}+4 x_{2} \leq 21 / 2 .
$$

- Every integral solution satisfies the stronger inequality

$$
-3 x_{1}+4 x_{2} \leq 10,
$$

obtained by rounding $21 / 2$ down to the nearest integer.

- Multiplying this inequality by 2 and the first inequality by 3 , and adding the resulting inequalities, gives:

$$
17 x_{2} \leq 101 .
$$

- Multiplying by $1 / 17$ and rounding down the right-hand side, we can conclude:

$$
x_{2} \leq 5 .
$$

- In general, suppose our system consists of

$$
a_{i} x \leq b_{i} \quad i=1, \ldots, m
$$

- Let $y_{1}, \ldots, y_{m} \geq 0$ and set

$$
c=\sum_{i=1}^{m} y_{i} a_{i}
$$

and

$$
d=\sum_{i=1}^{m} y_{i} b_{i} .
$$

- Trivially, every solution to $A x \leq b$ satisfies $c x \leq d$.
- If c is integral, all integral solutions to $A x \leq b$ also satisfy

$$
c x \leq\lfloor d\rfloor .
$$

- $c x \leq\lfloor d\rfloor$ is called a Gomory-Chvátal cut (GC cut).
- "Cut" because the rounding operation cuts off part of the original polyhedron.
- GC cuts can also be defined directly in terms of the polyhedron P defined by $A x \leq b$: just take a valid inequality $c x \leq d$ for P with c integral and round down to $c x \leq\lfloor d\rfloor$.
- The use of the nonnegative numbers y_{i} is to provide a derivation of $c x \leq\lfloor d\rfloor$. With the y_{i} 's in hand, we are easily convinced that $c x \leq d$ and $c x \leq\lfloor d\rfloor$ are indeed valid.

Cutting-Plane Proofs

- A cutting-plane proof of an inequality $w x \leq t$ from $A x \leq b$ is a sequence of inequalities

$$
a_{m+k} x \leq b_{m+k} \quad k=1, \ldots, M
$$

together with nonnegative numbers

$$
y_{k i} \quad k=1, \ldots, M, i=1, \ldots, m+k-1
$$

such that for each $k=1, \ldots, M$, the inequality $a_{m+k} x \leq b_{m+k}$ is derived from

$$
a_{i} x \leq b_{i} \quad i=1, \ldots, m+k-1
$$

using the numbers $y_{k i}, i=1, \ldots, m+k-1$, and such that the last inequality in the sequence is $w x \leq t$.

Theorem 1 (Chvátal 1973, Gomory 1960). Let $P=\{x: A x \leq b\}$ be a rational polytope and let $w x \leq t$ be an inequality, with w integral, satisfied by all integral vectors in P. Then there exists a cutting-plane proof of $w x \leq t^{\prime}$ from $A x \leq b$, for some $t^{\prime} \leq t$.

- Proof idea:
- Push $w x \leq l$ into the polytope as far as possible.
- Use induction to show that the face F induced by $w x \leq l$ contains no integral points.
- Push the inequality to $w x \leq l-1$.
- Continuing this, we eventually reach $w x \leq t$.
- Need technique to translate the cutting-plane proof on F to a proof on the entire polytope:

Lemma 2. Let F be a face of a rational polytope P. If $c x \leq\lfloor d\rfloor$ is a GC cut for F, then there exists a $G C$ cut $c^{\prime} x \leq\left\lfloor d^{\prime}\right\rfloor$ for P such that

$$
F \cap\left\{x: c^{\prime} x \leq\left\lfloor d^{\prime}\right\rfloor\right\}=F \cap\{x: c x \leq\lfloor d\rfloor\} .
$$

Proof:

- Let $P=\left\{x: A^{\prime} x \leq b^{\prime}, A^{\prime \prime} x \leq b^{\prime \prime}\right\}$, where $A^{\prime \prime}$ and $b^{\prime \prime}$ are integral.
- Let $F=\left\{x: A^{\prime} x \leq b^{\prime}, A^{\prime \prime} x=b^{\prime \prime}\right\}$.
- We may assume that $d=\max \{c x: x \in F\}$.
- By LP duality, there exist vectors $y^{\prime} \geq 0$ and $y^{\prime \prime}$ such that

$$
\begin{aligned}
y^{\prime} A^{\prime}+y^{\prime \prime} A^{\prime \prime} & =c \\
y^{\prime} b^{\prime}+y^{\prime \prime} b^{\prime \prime} & =d .
\end{aligned}
$$

- To obtain a GC cut for P we must replace $y^{\prime \prime}$ by a vector that is nonnegative.
- To this end, define

$$
\begin{gathered}
c^{\prime}=c-\left\lfloor y^{\prime \prime}\right\rfloor A^{\prime \prime}=y^{\prime} A^{\prime}+\left(y^{\prime \prime}-\left\lfloor y^{\prime \prime}\right\rfloor\right) A^{\prime \prime} \\
d^{\prime}=d-\left\lfloor y^{\prime \prime}\right\rfloor b^{\prime \prime}=y^{\prime} b^{\prime}+\left(y^{\prime \prime}-\left\lfloor y^{\prime \prime}\right\rfloor\right) b^{\prime \prime}
\end{gathered}
$$

- Then c^{\prime} is integral, and $c^{\prime} x \leq d^{\prime}$ is a valid inequality for P.
- Moreover, since $\lfloor d\rfloor=\left\lfloor d^{\prime}\right\rfloor+\left\lfloor y^{\prime \prime}\right\rfloor b^{\prime \prime}$,

$$
\begin{array}{rr}
F \cap\left\{x: c^{\prime} x \leq\left\lfloor d^{\prime}\right\rfloor\right\} & = \\
F \cap\left\{x: c^{\prime} x \leq\left\lfloor d^{\prime}\right\rfloor,\left\lfloor y^{\prime \prime}\right\rfloor A^{\prime \prime} x=\left\lfloor y^{\prime \prime}\right\rfloor b^{\prime \prime}\right\} & = \\
F \cap\{x: c x \leq\lfloor d\rfloor\} . &
\end{array}
$$

Theorem 3. Let $P=\{x: A x \leq b\}$ be a rational polytope that contains no integral vectors. Then there exists a cutting-plane proof of $0 x \leq-1$ from $A x \leq b$.

Proof:

- Induction on the dimension of P.
- Theorem trivial if $\operatorname{dim}(P)=0$. So assume $\operatorname{dim}(P) \geq 1$.
- Let $w x \leq l$ be an inequality, with w integral, that induces a proper face of P.
- Let $\bar{P}=\{x \in P: w x \leq\lfloor l\rfloor\}$.
- If $\bar{P}=\emptyset$, then we can use Farkas' Lemma to deduce $0 x \leq-1$ from $A x \leq b, w x \leq\lfloor l\rfloor$.
- Suppose $\bar{P} \neq \emptyset$, and let $F=\{x \in \bar{P}: w x=\lfloor l\rfloor\}$.
- Note that $\operatorname{dim}(F)<\operatorname{dim}(P)$.
- By the induction hypothesis, there exists a cutting-plane proof of $0 x \leq-1$ from $A x \leq b$, $w x=\lfloor l\rfloor$.
- Using the lemma, we get a cutting-plane proof, from $A x \leq b, w x \leq\lfloor l\rfloor$ of an inequality $c x \leq\lfloor d\rfloor$ such that

$$
\bar{P} \cap\{x: c x \leq\lfloor d\rfloor, w x=\lfloor l\rfloor\}=\emptyset
$$

- Thus, after applying this sequence of cuts to \bar{P}, we have $w x \leq\lfloor l\rfloor-1$ as a GC cut.
- As P is bounded, $\min \{w x: x \in P\}$ is finite.
- Continuing in the above manner, letting $\bar{P}=\{x \in P: w x \leq\lfloor l\rfloor-1\}$, and so on, we eventually obtain a cutting-plane proof of some $w x \leq t$ such that $P \cap\{x: w x \leq t\}=\emptyset$.
- With Farkas' Lemma we then derive $0 x \leq-1$ from $A x \leq b, w x \leq t$.

Theorem 4 (Chvátal 1973, Gomory 1960). Let $P=\{x: A x \leq b\}$ be a rational polytope and let $w x \leq t$ be an inequality, with w integral, satisfied by all integral vectors in P. Then there exists a cutting-plane proof of $w x \leq t^{\prime}$ from $A x \leq b$, for some $t^{\prime} \leq t$.

Proof:

- Let $l=\max \{w x: x \in P\}$, and let $\bar{P}=\{x \in P: w x \leq\lfloor l\rfloor\}$.
- If $\lfloor l\rfloor \leq t$, we are done, so suppose not.
- Consider the face $F=\{x \in \bar{P}: w x=\lfloor l\rfloor\}$.
- Since $t<\lfloor l\rfloor, F$ contains no integral points.
- By the previous theorem, there exists a cuting-plane proof of $0 x \leq-1$ from $A x \leq b, w x=\lfloor l\rfloor$.
- Using the lemma, we get a cutting-plane proof, from $A x \leq b$, $w x \leq\lfloor l\rfloor$ of an inequality $c x \leq\lfloor d\rfloor$ such that

$$
\bar{P} \cap\{x: c x \leq\lfloor d\rfloor, w x=\lfloor l\rfloor\}=\emptyset .
$$

- Thus, after applying this sequence of cuts to \bar{P}, we have $w x \leq\lfloor l\rfloor-1$ as a GC cut.
- Continuing in this fashion, we finally derive an inequality $w x \leq t^{\prime}$ with $t^{\prime} \leq t$.

Chvátal Rank

- GC cuts have an interesting connection with the problem of finding linear descriptions of combinatorial convex hulls.
- In this context, we do not think of cuts coming sequentially, as in cutting-plane proofs, but rather in waves that provide successively tighter approximations to P_{I}, the convex hull of integral points in P.
- Let P^{\prime} be the set of all points in P that satisfy every GC cut for P.

Theorem 5 (Schrijver 1980). If P is a rational polyhedron, then P^{\prime} is also a rational polyhedron.
Proof:

- Let $P=\{x: A x \leq b\}$ with A and b integral.
- Claim: P^{\prime} is defined by $A x \leq b$ and all inequalities that can be written as

$$
(y A) x \leq\lfloor y b\rfloor
$$

for some vector y such that $0 \leq y<1$ and $y A$ is integral.

- Note that this would give the result.
- So let $w x \leq\lfloor t\rfloor$ be a GC cut, derived from $A x \leq b$ with the nonnegative vector y.
- Let $y^{\prime}=y-\lfloor y\rfloor$.
- Then $w^{\prime}=y^{\prime} A=w-\lfloor y\rfloor A$ is integral.
- Moreover, $t^{\prime}=y^{\prime} b=t-\lfloor y\rfloor b$ differs from t by an integral amount.
- So the cut $w^{\prime} x \leq\left\lfloor t^{\prime}\right\rfloor$ derived with y^{\prime}, together with the valid inequality $(\lfloor y\rfloor A) x \leq\lfloor y\rfloor b$ sum to $w x \leq t$.

Letting $P^{(0)}=P$ and $P^{(i)}=\left(P^{(i-1)}\right)^{\prime}$, we have

$$
P=P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \supseteq \cdots \supseteq P_{I} .
$$

Theorem 6. If P is a rational polyhedron, then $P^{(k)}=P_{I}$ for some integer k.

The least k for which $P^{(k)}=P_{I}$ is called the Chvátal rank of P.

- In general, there is no upper bound on the Chvátal rank in terms of the dimension of the polyhedron.
- For polytopes $P \subseteq[0,1]^{n}$, the Chvátal rank is $\mathrm{O}\left(n^{2} \log n\right)$.
- If for a family of polyhedra P the problem $\max \left\{w x: x \in P_{I}\right\}$ is NP-complete, then, assuming NP \neq co-NP, there is no fixed k such that $P^{(k)}=P_{I}$ for all P.

Gomory's Cutting-Plane Procedure

- Consider $\max \left\{c x: A x=b, x \in \mathbb{Z}_{+}^{n}\right\}$.
- Given an (optimal) LP basis B, write the IP as

$$
\begin{array}{rr}
\max c_{B} B^{-1} b+\sum_{j \in N} \bar{c}_{j} x_{j} & \\
\text { s.t. } x_{B_{i}}+\sum_{j \in N} \bar{a}_{i j} x_{j}=\bar{b}_{i} & i=1, \ldots, m \\
x_{j} \in \mathbb{Z} & j=1, \ldots, n
\end{array}
$$

- $\bar{c}_{j} \leq 0$ for all $j \in N ; \bar{b}_{i} \geq 0$ for all $i=1, \ldots, m$.
- If the LP solution is not integral, then there exists row i with $\bar{b}_{i} \notin \mathbb{Z}$.
- The GC cut for row i is $x_{B_{i}}+\sum_{j \in N}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{i}\right\rfloor$.
- Substitute for $x_{B_{i}}$ to get $\sum_{j \in N}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor$.
- Or if $f_{i j}=\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor, f_{i}=\bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor$, then

$$
\sum_{j \in N} f_{i j} x_{i j} \geq f_{i} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

