Fall 2009

Enumerative Methods

A knapsack problem

- Let's focus on maximization integer linear programs with only binary variables
- For example: a knapsack problem with 6 items

 $\begin{array}{ll} \max & 16x_1 + 22x_2 + 12x_3 + 8x_4 + 11x_5 + 19x_6 \\ \text{s.t.} & 5x_1 + 7x_2 + 4x_3 + 3x_4 + 4x_5 + 6x_6 \leq 14 \\ & x_1, x_2, \dots, x_6 \in \{0, 1\} \end{array}$

Complete enumeration

• Complete enumeration systematically considers all possible solutions

- *n* binary variables $x_1, \ldots, x_n \Rightarrow 2^n$ possible solutions

- After considering all possible solutions, choose best feasible solution
- Usual idea: iteratively break the problem into 2

- For example, first, we consider consider separately the cases that $x_1 = 0$ and $x_1 = 1$

0

An enumeration tree

- Let's enumerate all possible solutions of our illustrative knapsack problem
- 6 binary decision variables x_1, \ldots, x_6
- We can enumerate all possible solutions systematically using a tree
- Start with root node
 - No variables have been fixed in value

• **Branch** the possibilities for x_1 : $x_1 = 0$ or $x_1 = 1$

• Next, branch the possibilities for x_2 : $x_2 = 0$ or $x_2 = 1$

• Keep building the tree, branching the possibilities for x_3, x_4, x_5, x_6

- Each node corresponds to a **partial solution**
 - For example, node $4 \Leftrightarrow \text{fix } x_1 = 0 \text{ and } x_2 = 1$
 - partial solution of node $4 = \mathbf{x}^{(4)} = (0, 1, \#, \#, \#, \#)$
- Each of the 64 **leaves** of the tree (nodes at the bottom) corresponds to a solution: a complete assignment of variables

Subtrees of an enumeration tree

• Subtree (or descendants) of node i =nodes obtained from node i from subsequent branching

- Example: red nodes = subtree of node 4
- Recall: node 4 \Leftrightarrow partial solution $\mathbf{x}^{(4)} = (0, 1, \#, \#, \#, \#)$
- Leaves of subtree of node $4 \Leftrightarrow$ **completions** of $\mathbf{x}^{(4)}$
 - (full) solutions that have the same fixed variables as $\mathbf{x}^{(4)}$
- Idea: stop branching from a node as soon as possible
 - Suppose we look at node 4 and conclude none of its descendants can be optimal
 - \Rightarrow Can eliminate 1/4 the solutions at once!

Incumbent solutions

- Goal of branch and bound: find an optimal (or at least a good feasible) solution to some optimization model
- The **incumbent solution** at any stage of branch and bound is the best feasible solution known so far (in terms of objective value)
- Notation:
 - Incumbent solution $\hat{\mathbf{x}}$
 - Incumbent solution's objective function value \hat{v}
- Most branch and bound algorithms have subroutines that run at the beginning trying to get a good feasible solution

Eliminating nodes and subtrees

- Let's look at our knapsack problem
- Suppose that we have an incumbent solution $\hat{\mathbf{x}}$ with objective value \hat{v} :

$$\hat{\mathbf{x}} = (1, 1, 0, 0, 0, 0)$$
 $\hat{v} = 38$

• Let's look at the subtree of node 4 in our enumeration tree

- Node 4 \Leftrightarrow partial solution $\mathbf{x}^{(4)} = (0, 1, \#, \#, \#, \#)$
- All possible completions of $\mathbf{x}^{(4)} \Leftrightarrow$ Leaves of node 4's subtree
- Candidate problem for node 4: find the best possible completion of $\mathbf{x}^{(4)}$

 $\begin{aligned} v^{(4)} &= \max & 16x_1 + 22x_2 + 12x_3 + 8x_4 + 11x_5 + 19x_6 \\ \text{s.t.} & 5x_1 + 7x_2 + 4x_3 + 3x_4 + 4x_5 + 6x_6 \leq 14 \\ & x_1 = 0, x_2 = 1 \\ & x_1, x_2, \dots, x_6 \in \{0, 1\} \end{aligned}$

• LP relaxation gives us upper bound on $v^{(4)}$:

$$\begin{split} \tilde{v}^{(4)} &= \max \quad 16x_1 + 22x_2 + 12x_3 + 8x_4 + 11x_5 + 19x_6\\ \text{s.t.} \quad 5x_1 + 7x_2 + 4x_3 + 3x_4 + 4x_5 + 6x_6 \leq 14\\ x_1 &= 0, x_2 = 1\\ 0 \leq x_i \leq 1, \quad i = 1, \dots, 6 \end{split}$$

- Solve LP relaxation: $\tilde{v}^{(4)} = 44$
- Best completion of $\mathbf{x}^{(4)}$ has value $v^{(4)} \leq \tilde{v}^{(4)} = 44$
- Incumbent solution has value $\hat{v} = 38$
- \Rightarrow It is possible that some completion of $\mathbf{x}^{(4)}$ has a better solution value than 38
- \Rightarrow Need to examine solutions that branch from node 4
- What if we had an incumbent solution with value $\hat{v} = 45$?
- Then no completion of $\mathbf{x}^{(4)}$ is better than our incumbent, since

$$v^{(4)} \le \tilde{v}^{(4)} = 44 < 45 = \hat{v}$$

• We can terminate or fathom node 4: we do not need to branch the subtree of node 4

Branch and bound in a nutshell

- Branch and bound creates the enumeration tree
 - one node at a time
 - one branch at a time
- Before branching on a node j, it solves the LP relaxation of the node j's candidate problem

- Candidate problem

- * original problem with variables fixed according to the partial solution $\mathbf{x}^{(j)}$ corresponding to node j
- * finds best completion of partial solution $\mathbf{x}^{(j)}$
- Depending on the solution to the candidate problem, it either
 - terminates node j
 - branches on node j
- We will examine 4 cases

Termination by infeasibility

- Node $j \Leftrightarrow$ partial solution $\mathbf{x}^{(j)}$
- Feasible region of candidate problem of node $j \Leftrightarrow$ All possible completions of $\mathbf{x}^{(j)} \Leftrightarrow$ All leaves of node j's subtree
- Case 1: Termination by infeasibility. The LP relaxation of the candidate problem of node j is infeasible
- \Rightarrow The candidate problem of node j is infeasible
- \Rightarrow Any completion of the partial solution $\mathbf{x}^{(j)}$ is infeasible for the original problem!
- \Rightarrow Terminate node *j* (do not branch from node *j*)

Termination by bound

• Notation:

- Recall: candidate problem of j finds best completion of partial solution $\mathbf{x}^{(j)}$
- Case 2: Termination by bound. $\tilde{v}^{(j)} \leq \hat{v}$
- $\Rightarrow v^{(j)} \leq \tilde{v}^{(j)} \leq \hat{v}$
- \Rightarrow No completion of $\mathbf{x}^{(j)}$ is better than the incumbent
- \Rightarrow Terminate node j (do not branch from node j)

Termination by solving

- Case 3: Termination by solving. $\tilde{v}^{(j)} > \hat{v}$ and the optimal solution $\tilde{\mathbf{x}}^{(j)}$ of the LP relaxation of node j's candidate problem is integer
- $\tilde{\mathbf{x}}^{(j)}$ is integer $\Rightarrow \tilde{\mathbf{x}}^{(j)}$ is optimal for the candidate problem

$$\Rightarrow v^{(j)} = \tilde{v}^{(j)} > \hat{v}$$

- \Rightarrow We have found a feasible solution that is better than the incumbent
- \Rightarrow Save solution $\mathbf{x}^{(j)}$ as new incumbent

- \Rightarrow No completion of partial solution $\mathbf{x}^{(j)}$ will be better
- \Rightarrow Terminate node j (do not branch from node j)

Branching

- Case 4: Branching. $\tilde{v}^{(j)} > \hat{v}$ and the optimal solution $\tilde{\mathbf{x}}^{(j)}$ of the LP relaxation of node j's candidate problem is not integer
- \Rightarrow It is possible that a completion of the partial solution $\mathbf{x}^{(j)}$ may have a better objective value
- Branch at node j: pick some variable that is not fixed in the partial solution $\mathbf{x}^{(j)}$ and create a child node for each possible value

Active nodes

- A node is called **active** if it has been analyzed:
 - it has no children
 - it has not been terminated
- For example:

The active nodes here are $2 \mbox{ and } 3$

- Initially, the only active node is the root node 0
- Branch and bound stops when there are no more active nodes

LP-based branch and bound algorithm for 0-1 ILPS

- We have essentially described the whole branch and bound algorithm, piecemeal
- We'll give an abbreviated version of the algorithm
- A = set of active nodes
- $\hat{\mathbf{x}} = \text{incumbent solution}, \hat{v} = \text{value of incumbent solution}$
- $LP^{(t)} = LP$ relaxation of node t's candidate problem
- $\tilde{\mathbf{x}}^{(t)} = \text{optimal solution to } LP^{(t)}, \tilde{v}^{(t)} = \text{optimal value of } LP^{(t)}$

0. Initialize.

- $A \leftarrow \{\text{partial solution with no variables fixed}\}$
- $\hat{\mathbf{x}} \leftarrow \emptyset$, $\hat{v} \leftarrow -\infty$ (or some external heuristic finds an incumbent)
- Solution counter $t \leftarrow 0$

1. Select.

- If $A = \emptyset$, then $\hat{\mathbf{x}}$ is optimal if it exists, and the problem is infeasible if no incumbent exists
- Else,
 - remove a node from A
 - label this node t
 - categorize t into one of the four cases
- Case 1: Termination by infeasibility $LP^{(t)}$ is infeasible. Terminate node t.
- Case 2: Termination by bound $\tilde{v}^{(t)} \leq \hat{v}$. Terminate node t.
- Case 3: Termination by solution $\tilde{v}^{(t)} > \hat{v}$ and $\tilde{\mathbf{x}}^{(t)}$ is integer. Terminate node t, set $\hat{\mathbf{x}} \leftarrow \tilde{\mathbf{x}}^{(t)}$ and $\hat{v} \leftarrow \tilde{v}^{(t)}$
- Case 4: Branching $\tilde{v}^{(t)} > \hat{v}$ and $\tilde{\mathbf{x}}^{(t)}$ is not integer. Choose a variable that is not fixed in partial solution $\mathbf{x}^{(t)}$ and branch on all its possible values
- Increment solution counter $t \leftarrow t + 1$, go o Step 1
- Some areas of vagueness:
 - Which active node to choose in Step 1?
 - * In principle, can select any active node
 - * One potential rule: **depth first search** select active node with the most components fixed (deepest in tree)
 - Which variable to branch on?
 - * In principle, can select any variable not fixed at node's partial solution
 - * One potential rule: choose variable whose LP optimal value at that node is fractional and closest to integer

Branch and bound, illustrated

• LP relaxation of candidate problem at root node:

LP⁽⁰⁾: max
$$16x_1 + 22x_2 + 12x_3 + 8x_4 + 11x_5 + 19x_6$$

s.t. $5x_1 + 7x_2 + 4x_3 + 3x_4 + 4x_5 + 6x_6 \le 14$
 $0 \le x_i \le 1$ $i = 1, \dots, 6$

- Optimal solution: $\tilde{v}^{(0)} = 44.4$, $\tilde{x}^{(0)} = (1, 0.43, 0, 0, 0, 1)$
- \Rightarrow Case 4: branch on x_2

• LP relaxation of candidate problem at root node LP⁽¹⁾:

$$\max \quad 16x_1 + 22x_2 + 12x_3 + 8x_4 + 11x_5 + 19x_6 \\ \text{s.t.} \quad 5x_1 + 7x_2 + 4x_3 + 3x_4 + 4x_5 + 6x_6 \le 14 \\ x_2 = 0 \\ 0 \le x_i \le 1 \qquad i = 1, \dots, 6$$

- Optimal solution: $\tilde{v}^{(1)} = 44$, $\tilde{x}^{(1)} = (1, 0, 0.75, 0, 0, 1)$
- \Rightarrow Case 4: branch on x_3

 \Rightarrow Case 4: branch on x_5

- Solve LP⁽³⁾: $\tilde{v}^{(3)} = 43$, $\tilde{x}^{(3)} = (1, 0, 0, 1, 0, 1)$
- Solving $LP^{(3)}$ yields integer solution that is better than incumbent
- \Rightarrow Case 3: replace incumbent with $\tilde{x}^{(3)},$ terminate node 3

- Solve LP⁽⁴⁾: $\tilde{v}^{(4)} = 42.8$, $\tilde{x}^{(4)} = (1, 0, 0, 0, 1, 0.83)$
- \Rightarrow Case 2: terminate node 4 by bound

• Solve LP⁽⁵⁾: $\tilde{v}^{(5)} = 43.8$, $\tilde{x}^{(5)} = (1, 0, 1, 0, 0, 0.83)$

 \Rightarrow Case 4: branch on x_6

- Solve LP⁽⁶⁾: $\tilde{v}^{(6)} = 41.6$, $\tilde{x}^{(6)} = (1, 0, 1, 0.33, 1, 0)$
- \Rightarrow Case 2: terminate node 6 by bound

- Solve LP⁽⁷⁾: $\tilde{v}^{(7)} = 43.8$, $\tilde{x}^{(7)} = (0.8, 0, 1, 0, 0, 1)$
- \Rightarrow Case 4: branch on x_1

• Solve LP⁽⁸⁾: $\tilde{v}^{(8)} = 42$, $\tilde{x}^{(8)} = (0, 0, 1, 0, 1, 1)$

 \Rightarrow Case 2: terminate node 8 by bound

- Solve LP⁽⁹⁾: infeasible
- \Rightarrow Case 2: terminate node 9 by infeasibility

- Solve LP⁽¹⁰⁾: $\tilde{v}^{(10)} = 44.3$, $\tilde{x}^{(10)} = (1, 1, 0, 0, 0, 0, 0.33)$
- \Rightarrow Case 4: branch on x_6
- And we keep on going in a similar manner until there are no active nodes left

- We solved 29 LPs to get an optimal solution to the knapsack problem
- We found the optimal solution at the **third** iteration, but could not conclude that this solution was optimal until the 28th iteration
- What can we say about the quality of the solution we obtained at the third iteration?

Branch and bound family tree terminology

• Easiest to explain by a picture:

- Node 1 is the **parent** of nodes 3 and 4
- Nodes 1 and 2 are the **children** of node 0

Parent bounds

- Suppose we have a maximization integer linear program
- Example:

- $-\mathbf{x}^{(j)} =$ partial solution at node j
- IP^(j) = node j's candidate problem
- LP^(j) = LP relaxation of node j's candidate problem
- $-v^{(j)} =$ optimal value of IP^(j)
- $\tilde{v}^{(j)} =$ optimal value of LP^(j)
- $v^{(3)}$ = value of best completion of $\mathbf{x}^{(3)}$
- $LP^{(3)} = LP^{(1)}$ + one additional variable fixed $\Rightarrow \tilde{v}^{(3)} \le \tilde{v}^{(1)}$

$$\Rightarrow v^{(3)} \le \tilde{v}^{(3)} \le \tilde{v}^{(1)}$$

• $LP^{(1)}$ also provides an upper bound on the value of the best completion of $\mathbf{x}^{(3)}$

Parent bounds

- For maximization ILPs, the optimal value of the LP relaxation of a parent node's candidate problem provides an upper bound on the objective value of any completion of its children
- Similar reasoning for minimization ILPs

Terminating nodes with parent bounds

- Can use parent bounds to terminate some nodes even faster
- Example:

- α , β , and γ are active nodes
- Suppose new incumbent found at node 3 has value $\hat{v} = 70$
- Parent bound: all completions of node 2 have value ≤ 65
- \Rightarrow No point in exploring $\beta,\,\gamma,$ can terminate them immediately

• Whenever branch and bound discovers a new incumbent solution, any active node whose parent bound is no better than the value of the new incumbent solution can be immediately terminated

How good is the current incumbent?

- Sometimes just finding a feasible solution is difficult
- Would be nice to approximate how close a given solution is to optimal
- LP relaxations and parent bounds can help us do this

- At node 3, we get a new incumbent with value $\hat{v} = 43$
- Any solution that might improve upon the incumbent is a <u>completion of some active partial</u> solution
- \Rightarrow Using parent bounds on α , β , γ , we can conclude at this point in branch and bound that the optimal value must be at most

$$\max\{44.4, 44, 43.25\} = 44.4$$

- What if we use the current incumbent as an approximation to the optimal solution?
- The current incumbent is at most

$$\frac{\text{(best possible)} - \text{(best known)}}{\text{best known}} = \frac{44.4 - 43}{43} = 3.25\%$$

below optimal

- For maximization ILPs, we can obtain an upper bound on the optimal value by
 - looking at the parent bound of all active nodes, and

1

- taking the highest parent bound
- Can use this to obtain a bound in the error in using the incumbent as an approximation

Selecting active nodes

- We used the depth first search rule in our illustration
- Other ideas:
 - Best first search selects at each iteration an active node with the best parent bound
 - Depth forward best back search selects
 - $\ast\,$ a deepest active node after a branching
 - * an active node with best parent bound after a termination

Branch and cut

```
[P] \max \quad 3x_1 + 4x_2
s.t. 5x_1 + 8x_2 \le 24x_1, x_2 \ge 0x_1, x_2 \text{ integer}[P''] \max \quad 3x_1 + 4x_2s.t. 5x_1 + 8x_2 \le 24
```

$$x_1 + x_2 \le 4$$
$$x_1, x_2 \ge 0$$

- Add constraint $x_1 + x_2 \le 4$
- Note: this constraint holds for all <u>integer</u> feasible solutions, but cuts off feasible solutions from the LP relaxation [P']
- The constraint $x_1 + x_2 \le 4$ is a valid inequality for [P]
- **Branch and cut** algorithms modify branch and bound by attempting to strengthen the LP relaxations of the candidate problems by adding valid inequalities
- Important: valid inequalities must hold for all feasible solutions to the <u>full</u> model, not just the candidate problems

- Added valid inequalities should cut off (render infeasible) the optimal solution to the LP relaxations of the candidate problems
- Sophisticated modern ILP codes are typically some variant of branch and cut

Branch and bound

- It is the starting point for all solution techniques for integer programming.
- Lots of research has been carried out over the past 40 years to make it more and more efficient.
- But, it is an art form to make it efficient. (We did get a sense why.)
- Integer programming is intrinsically difficult.
- How to do branching for general integer programs?

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.