
15.083J Integer Programming and Combinatorial Optimization	 Fall 2009


Enumerative Methods 

A knapsack problem 

•	 Let’s focus on maximization integer linear programs with only binary variables 

•	 For example: a knapsack problem with 6 items


max 16x1 + 22x2 + 12x3 + 8x4 + 11x5 + 19x6


s.t.	 5x1 + 7x2 + 4x3 + 3x4 + 4x5 + 6x6 ≤ 14 

x1, x2, . . . , x6 ∈ {0, 1} 

Complete enumeration 

•	 Complete enumeration systematically considers all possible solutions 

–	 n binary variables x1, . . . , xn 2n possible solutions ⇒ 

•	 After considering all possible solutions, choose best feasible solution 

•	 Usual idea: iteratively break the problem into 2 

–	 For example, first, we consider consider separately the cases that x1 = 0 and x1 = 1 

An enumeration tree 

•	 Let’s enumerate all possible solutions of our illustrative knapsack problem 

•	 6 binary decision variables x1, . . . , x6 

•	 We can enumerate all possible solutions systematically using a tree


Start with root node
• 

–	 No variables have been fixed in value 

0 

•	 Branch the possibilities for x1: x1 = 0 or x1 = 1 

1




0 

1 

x1 = 0 

2 

x1 = 1 

• Next, branch the possibilities for x2: x2 = 0 or x2 = 1 

0

1	

4

2

5 6 

x1 = 0 x1 = 1 

x2 = 0 x2 = 1 x2 = 0 

3 

x2 = 1 

• Keep building the tree, branching the possibilities for x3, x4, x5, x6 

0x1 = 0 x1 = 1 

x2 = = 1 x2 = = 11 

3 

0 

4 

x2 
2 

5 

0 

6 

x2 

•	 Each node corresponds to a partial solution 

–	 For example, node 4 fix x1 = 0 and x2 = 1 ⇔ 

–	 partial solution of node 4 = x(4) = (0, 1, #, #, #, #) 

•	 Each of the 64 leaves of the tree (nodes at the bottom) corresponds to a solution: a complete 
assignment of variables 

Subtrees of an enumeration tree 

0

10	 20 

x1 = 0 x1 = 1 

x2 = x2 = 1	 x2 = x2 = 1 

3 4 5 6 

•	 Subtree (or descendants) of node i = nodes obtained from node i from subsequent branch
ing 

2 



•	 Example: red nodes = subtree of node 4


Recall: node 4 partial solution x(4) = (0, 1, #, #, #, #)
•	 ⇔ 

Leaves of subtree of node 4 completions of x(4) •	 ⇔ 

–	 (full) solutions that have the same fixed variables as x(4) 

•	 Idea: stop branching from a node as soon as possible 

–	 Suppose we look at node 4 and conclude none of its descendants can be optimal 

Can eliminate 1/4 the solutions at once! ⇒ 

Incumbent solutions 

•	 Goal of branch and bound: find an optimal (or at least a good feasible) solution to some 
optimization model 

•	 The incumbent solution at any stage of branch and bound is the best feasible solution 
known so far (in terms of objective value) 

Notation:• 

–	 Incumbent solution x̂

–	 Incumbent solution’s objective function value v̂ 

•	 Most branch and bound algorithms have subroutines that run at the beginning trying to get 
a good feasible solution 

Eliminating nodes and subtrees 

•	 Let’s look at our knapsack problem 

•	 Suppose that we have an incumbent solution x̂ with objective value v̂: 

x̂ = (1, 1, 0, 0, 0, 0) v̂ = 38


Let’s look at the subtree of node 4 in our enumeration tree
• 

0 

1 

3 4 

2 

5 6 

3




0 

1 

4 

x2 = 1 

x1 = 0 

• Node 4 partial solution x(4) = (0, 1, #, #, #, #)⇔ 

• All possible completions of x(4) ⇔ Leaves of node 4’s subtree 

• Candidate problem for node 4: find the best possible completion of x(4) 

v(4) = max 16x1 + 22x2 + 12x3 + 8x4 + 11x5 + 19x6 

s.t. 5x1 + 7x2 + 4x3 + 3x4 + 4x5 + 6x6 ≤ 14 

x1 = 0, x2 = 1 

x1, x2, . . . , x6 ∈ {0, 1} 

• LP relaxation gives us upper bound on v(4): 

ṽ(4) = max 16x1 + 22x2 + 12x3 + 8x4 + 11x5 + 19x6 

s.t. 5x1 + 7x2 + 4x3 + 3x4 + 4x5 + 6x6 ≤ 14 

x1 = 0, x2 = 1 

0 ≤ xi ≤ 1, i = 1, . . . , 6 

Solve LP relaxation: ṽ(4) = 44 • 

• Best completion of x(4) has value v(4) ≤ ṽ(4) = 44 

Incumbent solution has value v̂ = 38 • 

It is possible that some completion of x(4) has a better solution value than 38 ⇒ 

Need to examine solutions that branch from node 4 ⇒ 

What if we had an incumbent solution with value v̂ = 45? • 

• Then no completion of x(4) is better than our incumbent, since 

v(4) ≤ ṽ(4) = 44 < 45 = v̂ 

We can terminate or fathom node 4: we do not need to branch the subtree of node 4 • 

4




Branch and bound in a nutshell 

Branch and bound creates the enumeration tree • 

– one node at a time


– one branch at a time


•	 Before branching on a node j, it solves the LP relaxation of the node j’s candidate problem 

–	 Candidate problem 

∗	 original problem with variables fixed according to the partial solution x(j) corre
sponding to node j 

∗	 finds best completion of partial solution x(j) 

•	 Depending on the solution to the candidate problem, it either 

–	 terminates node j 

– branches on node j


We will examine 4 cases
• 

Termination by infeasibility 

0 

1 

3 4 

infeasible 

Node j partial solution x(j) • ⇔ 

Feasible region of candidate problem of node j All possible completions of x(j) All leaves •	 ⇔ ⇔
of node j’s subtree 

•	 Case 1: Termination by infeasibility. The LP relaxation of the candidate problem of 
node j is infeasible 

The candidate problem of node j is infeasible ⇒ 

Any completion of the partial solution x(j) is infeasible for the original problem! ⇒ 

Terminate node j (do not branch from node j)⇒ 

5




Termination by bound


0 

1 

3 4 

by bound 

Notation:• 

v̂ = value of incumbent solution 

v(j) = optimal value of candidate problem for j 

ṽ(j) = optimal value of LP relaxation 

of candidate problem for j 

•	 Recall: candidate problem of j finds best completion of partial solution x(j) 

•	 Case 2: Termination by bound. ṽ(j) ≤ v̂

⇒ v(j) ≤ ṽ(j) ≤ v̂

No completion of x(j) is better than the incumbent ⇒ 

Terminate node j (do not branch from node j)⇒ 

Termination by solving 

0 

1 

3 4 

by solving 

•	 Case 3: Termination by solving. ṽ(j) > v̂ and the optimal solution x̃(j) of the LP 
relaxation of node j’s candidate problem is integer 

x̃(j) is integer x̃(j) is optimal for the candidate problem •	 ⇒ 

v(j) = ṽ(j) > v̂⇒ 

We have found a feasible solution that is better than the incumbent ⇒ 

Save solution x(j) as new incumbent ⇒ 

6 



No completion of partial solution x(j) will be better ⇒ 

Terminate node j (do not branch from node j)⇒ 

Branching 

0 

1 

3 4 

x3 = 0 x3 = 1 

•	 Case 4: Branching. ṽ(j) > v̂ and the optimal solution x̃(j) of the LP relaxation of node j’s 
candidate problem is not integer 

It is possible that a completion of the partial solution x(j) may have a better objective value ⇒ 

•	 Branch at node j: pick some variable that is not fixed in the partial solution x(j) and create 
a child node for each possible value 

Active nodes 

•	 A node is called active if it has been analyzed: 

–	 it has no children 

–	 it has not been terminated 

•	 For example: 

0 

1 

3 4 

2 

by solving 

The active nodes here are 2 and 3 

•	 Initially, the only active node is the root node 0 

•	 Branch and bound stops when there are no more active nodes 

7 



LP-based branch and bound algorithm for 0-1 ILPS 

•	 We have essentially described the whole branch and bound algorithm, piecemeal 

•	 We’ll give an abbreviated version of the algorithm 

A = set of active nodes • 

•	 x̂ = incumbent solution, v̂ = value of incumbent solution 

•	 LP(t) = LP relaxation of node t’s candidate problem 

•	 x̃(t) = optimal solution to LP(t), ṽ(t) = optimal value of LP(t) 

0.	 Initialize. 

•	 A ← {partial solution with no variables fixed} 

•	 x̂← ∅, v̂ ← −∞ (or some external heuristic finds an incumbent)


Solution counter t 0
•	 ← 

1.	 Select. 

•	 If A = ∅, then x̂ is optimal if it exists, and the problem is infeasible if no incumbent 
exists 

•	 Else, 
–	 remove a node from A 
–	 label this node t 
–	 categorize t into one of the four cases 

Case 1: Termination by infeasibility LP(t) is infeasible. Terminate node t.• 

•	 Case 2: Termination by bound ṽ(t) ≤ v̂. Terminate node t. 

•	 Case 3: Termination by solution ṽ(t) > v̂ and x̃(t) is integer. Terminate node t, set 
x̂ x̃(t) and v̂ ṽ(t) ← ← 

•	 Case 4: Branching ṽ(t) > v̂ and x̃(t) is not integer. Choose a variable that is not fixed in 
partial solution x(t) and branch on all its possible values 

Increment solution counter t t + 1, goto Step 1 •	 ← 

•	 Some areas of vagueness: 

–	 Which active node to choose in Step 1? 

∗	 In principle, can select any active node 

∗	 One potential rule: depth first search - select active node with the most compo
nents fixed (deepest in tree) 

–	 Which variable to branch on? 

∗	 In principle, can select any variable not fixed at node’s partial solution 

∗	 One potential rule: choose variable whose LP optimal value at that node is fractional 
and closest to integer 

8 



Branch and bound, illustrated


v̂ = −∞, x̂ = ∅ 0 

x2 = 0 x2 = 1 

ṽ(0) = 44.4 

•	 LP relaxation of candidate problem at root node: 

LP(0) : max 16x1 + 22x2 + 12x3 + 8x4 + 11x5 + 19x6 

s.t.	 5x1 + 7x2 + 4x3 + 3x4 + 4x5 + 6x6 ≤ 14 

0 ≤ xi ≤ 1 i = 1, . . . , 6 

•	 Optimal solution: ṽ(0) = 44.4, x̃(0) = (1, 0.43, 0, 0, 0, 1)


Case 4: branch on x2
⇒ 

ṽ	 = 
1 

44 

0 
(0)ṽ	 = 44.4 

v̂ = −∞, x̂ = ∅ 

x2 = 0 x2 = 1 

(1) 

x3 = 0 x3 = 1 

LP relaxation of candidate problem at root node LP(1):• 

max 16x1 + 22x2 + 12x3 + 8x4 + 11x5 + 19x6 

s.t.	 5x1 + 7x2 + 4x3 + 3x4 + 4x5 + 6x6 ≤ 14 

x2 = 0 

0 ≤ xi ≤ 1 i = 1, . . . , 6 

•	 Optimal solution: ṽ(1) = 44, x̃(1) = (1, 0, 0.75, 0, 0, 1)


Case 4: branch on x3
⇒ 

0

1 

(0)ṽ	 = 44.4 
v̂ = −∞, x̂ = ∅ 

x2 = 0 x2 = 1 

(1)ṽ	 = 44 

x

2 

3 = 0 x3 = 1 

ṽ(2) = 43.25 

x5 = 0 x5 = 1 

Solve LP(2): ṽ(2) = 43.25, x̃(2) = (1, 0, 0, 0, 0.75, 1)• 

9 



Case 4: branch on x5⇒ 

0

1

2

3 

(0)ṽ = 44.4 
v̂ = −∞ 43, x̂ = ∅ x̃(3) 

x2 = 0 x2 = 1 

(1)ṽ = 44 

x3 = 0 x3 = 1 

ṽ(2) = 43.25 

x5 = 0 x5 = 1 

(3)ṽ = 43 

by solving 

Solve LP(3): ṽ(3) = 43, x̃(3) = (1, 0, 0, 1, 0, 1)• 

Solving LP(3) yields integer solution that is better than incumbent • 

Case 3: replace incumbent with x̃(3), terminate node 3 ⇒ 

0

1

2

3 4 

(0)ṽ = 44.4 
v̂ = 43, x̂ = x̃(3) 

x2 = 0 x2 = 1 

(1)ṽ = 44 

x3 = 0 x3 = 1 

(2)ṽ = 43.25 

x5 = 0 x5 = 1 

(3) (4)ṽ = 43 ṽ = 42.8 

by solving by bound 

Solve LP(4): ṽ(4) = 42.8, x̃(4) = (1, 0, 0, 0, 1, 0.83)• 

Case 2: terminate node 4 by bound ⇒ 

0

1

2 

3 

0 

4

x5 = 1 

5

x6 = 0 x6 

(0)ṽ = 44.4 
v̂ = 43, x̂ = x̃(3) 

x2 = 0 x2 = 1 

(1)ṽ = 44 

x3 = 0 x3 = 1 

(2) (5)ṽ = 43.25 ṽ = 43.8 

x5 = = 1 

(3) (4)ṽ = 43 ṽ = 42.8 

by solving by bound 

Solve LP(5): ṽ(5) = 43.8, x̃(5) = (1, 0, 1, 0, 0, 0.83)• 

10 



Case 4: branch on x6⇒ 

1

2	 5 

(1) 

0 
(0)ṽ	 = 44.4 

v̂ = 43, x̂ = x̃(3) 

x2 = 0	 x2 = 1 

ṽ = 44 

x3 = 0 x3 = 1 

(2) (5)ṽ	 = 43.25 ṽ	 = 43.8 

x5	

3

= 0 

4 

x5 = 1 x6 = 0 

(3) (4)ṽ	 = 43 ṽ	 = 42.8 

(6)ṽ = 41.6 
by solving by bound by bound 

6 

Solve LP(6): ṽ(6) = 41.6, x̃(6) = (1, 0, 1, 0.33, 1, 0)• 

Case 2: terminate node 6 by bound ⇒ 

1

2 

v̂ = 43, x̂ = x̃(3) 

x2 = 0 

(1)ṽ = 44 

x3 = 0 x3 = 1 

(2) 

5 

6 7 

x6 = 1 

0 

x2 = 1 

ṽ(0) = 44.4 

(5)ṽ = 43.25 ṽ = 43.8 

x5 

3

= 0 

4 

x5 = 1 x6 = 0 x6 = 1 

(3) (4) (7)ṽ	 = 43 ṽ = 42.8 ṽ	 = 43.8 

(6)ṽ	 = 41.6 
by solving by bound by bound 

x1 = 0 x1 = 1 

•	 Solve LP(7): ṽ(7) = 43.8, x̃(7) = (0.8, 0, 1, 0, 0, 1)


Case 4: branch on x1
⇒ 

6 7

8 

ṽ(7) = 43.8 

ṽ	 = 
2

3 4

43.25 ṽ = 43.8 

0

1 

5 

(0) 

v̂ = 43, x̂ = x̃(3) ṽ = 44.4 

x2 = 0 x2 = 1 

ṽ(1) = 44 

x3 = 0 x3 = 1 

(2) (5) 

x5 = 0 x5 = 1 x6 = 0 x6 = 1 

ṽ(3) = 43 ṽ(4) = 42.8 

(6)ṽ	 = 41.6 
by solving by bound by bound 

x1 = 0 x1 = 1 

(8)ṽ	 = 42 

by bound 

Solve LP(8): ṽ(8) = 42, x̃(8) = (0, 0, 1, 0, 1, 1)• 

11 



Case 2: terminate node 8 by bound ⇒ 

0

1

2 

3

0 

4 

x5 

5

6

0 

7

8 9 

x6 

(0)ṽ = 44.4 
v̂ = 43, x̂ = x̃(3) 

x2 = 0 x2 = 1 

(1)ṽ = 44 

x3 = 0 x3 = 1 

(2) (5)ṽ = 43.25 ṽ = 43.8 

x5 = = 1 x6 = = 1 

(3) (4) (7)ṽ = 43 ṽ = 42.8 ṽ = 43.8 

ṽ(6) = 41.6 
by solving by bound by bound 

x1 = 0 x1 = 1 

(8)ṽ = 42 

by boundinfeasible 

Solve LP(9): infeasible • 

Case 2: terminate node 9 by infeasibility ⇒ 

2 

3 4 
(4) (7) 

0

1 

x5 = 1 

= 0 

5

6 

x6 = 0 

7

8 9 

x3 = 1 

10

x6 = 0 x6 =

x6 = 1 

x2 = 0 x2 = 1 

ṽ(1) = 44 

ṽ(5) = 43.8 

(0) 

v̂ = 43, x̂ = x̃(3) ṽ = 44.4 

x3 1 

(2)ṽ = 43.25


x5 = 0


(3)ṽ = 43 ṽ = 42.8 ṽ = 43.8 

(6)ṽ = 41.6 
by solving by bound by bound 

x1 = 0 x1 = 1 

(8)ṽ = 42 

by boundinfeasible 

Solve LP(10): ṽ(10) = 44.3, x̃(10) = (1, 1, 0, 0, 0, 0.33)• 

Case 4: branch on x6⇒ 

• And we keep on going in a similar manner until there are no active nodes left 

12




0

1 

= 0 

10

11	

12 

13 

14 15 

16 

= 0 

17 

x3 

20

18 19 

x6 = 0 

21

22 

23 

24 25

26 

27

= 0

x6 = 1

x2 

˜(21) = 

ṽ

(0)ṽ = 44.4 
v̂ = 43, x̂ = x̃(3)


x2 = 1 
ṽ(10) = 44.3


(11)	 (20)ṽ = 44	 ṽ = 44.2 

x3	 = 1 x1 x1 = 1 

(12)	 (17)ṽ = 43.5	 ṽ = 43.6 v 44 
28 

infeasible 
x5 = 0 x5 = 1 x1 = 0 x1 = 1 x3 = 0 x3 = 1 

(22) = 43.75
(13)	 (16)ṽ = 43.3 ṽ = 42.6 

(18)ṽ = 42.3 
infeasibleby boundinfeasible 

x4 = 0 x4 = 1 x5 = 0 x5 = 1


ṽ(14) = 38 ṽ(15) = 42.8 ṽ(23) = 43.66


infeasibleby bound by bound 
x4 = 0 x4 = 1 

(24)ṽ = 41 

by boundinfeasible 

•	 We solved 29 LPs to get an optimal solution to the knapsack problem 

•	 We found the optimal solution at the third iteration, but could not conclude that this solution 
was optimal until the 28th iteration 

•	 What can we say about the quality of the solution we obtained at the third iteration? 

Branch and bound family tree terminology 

•	 Easiest to explain by a picture: 

0 

1 

3 4 

2 

•	 Node 1 is the parent of nodes 3 and 4 

Nodes 1 and 2 are the children of node 0 • 

Parent bounds 

•	 Suppose we have a maximization integer linear program 

•	 Example: 

13 



0 

1 

3 4 

2 

–	 x(j) = partial solution at node j 

–	 IP(j) = node j’s candidate problem 

–	 LP(j) = LP relaxation of node j’s candidate problem 

–	 v(j) = optimal value of IP(j) 

–	 ṽ(j) = optimal value of LP(j) 

•	 v(3) = value of best completion of x(3) 

•	 LP(3) = LP(1) + one additional variable fixed ⇒ ṽ(3) ≤ ṽ(1) 

⇒ (3) ≤ ˜(3) ≤ ˜(1)v v v

LP(1) also provides an upper bound on the value of the best completion of x(3) • 

Parent bounds 

•	 For maximization ILPs, the optimal value of the LP relaxation of a parent node’s candidate 
problem provides an upper bound on the objective value of any completion of its children 

•	 Similar reasoning for minimization ILPs 

Terminating nodes with parent bounds 

•	 Can use parent bounds to terminate some nodes even faster 

•	 Example: 

0 

ṽ(0) = 80 

1 

ṽ(1) = 75 

3 

by solving 

α 

2 

ṽ(2) = 65 

β γ 

•	 α, β, and γ are active nodes 

•	 Suppose new incumbent found at node 3 has value v̂ = 70 

•	 Parent bound: all completions of node 2 have value ≤ 65 

No point in exploring β, γ, can terminate them immediately ⇒ 

14 



•	 Whenever branch and bound discovers a new incumbent solution, any active node whose 
parent bound is no better than the value of the new incumbent solution can be immediately 
terminated 

How good is the current incumbent? 

•	 Sometimes just finding a feasible solution is difficult 

•	 Would be nice to approximate how close a given solution is to optimal 

•	 LP relaxations and parent bounds can help us do this 

v̂ = −∞ 43, x̂ = ∅ x̃(3) 

0

1	

2 

3 γ 

β 

α 

(0)ṽ	 = 44.4 

x2 = 0 x2 = 1 

(1)ṽ	 = 44 

x3 = 0 x3 = 1 

ṽ(2) = 43.25 

x5 = 0 x5 = 1 

(3)ṽ	 = 43 

by solving 

•	 At node 3, we get a new incumbent with value v̂ = 43 

•	 Any solution that might improve upon the incumbent is a completion of some active partial 
solution 

Using parent bounds on α, β, γ, we can conclude at this point in branch and bound that the ⇒ 
optimal value must be at most


max{44.4, 44, 43.25} = 44.4


•	 What if we use the current incumbent as an approximation to the optimal solution?


The current incumbent is at most
• 
(best possible) − (best known) 

= 
44.4 − 43 

= 3.25%

best known 43


below optimal


•	 For maximization ILPs, we can obtain an upper bound on the optimal value by 

–	 looking at the parent bound of all active nodes, and 

–	 taking the highest parent bound 

• Can use this to obtain a bound in the error in using the incumbent as an approximation 

15




Selecting active nodes 

•	 We used the depth first search rule in our illustration 

Other ideas: • 

–	 Best first search selects at each iteration an active node with the best parent bound 

–	 Depth forward best back search selects 

∗	 a deepest active node after a branching 

∗	 an active node with best parent bound after a termination 

Branch and cut 

[P] max 3x1 + 4x2 

s.t.	 5x1 + 8x2 ≤ 24 

x1, x2 ≥ 0 

x1, x2 integer 

[P��] max 3x1 + 4x2 

s.t. 5x1 + 8x2 ≤ 24 

x1 + x2 ≤ 4 

x1, x2 ≥ 0 

x2 

x1 
1 2 3 4 5 

1 

2 

3 

4 

[P��] 

[P] 

[P�] 

•	 Add constraint x1 + x2 ≤ 4 

•	 Note: this constraint holds for all integer feasible solutions, but cuts off feasible solutions 
from the LP relaxation [P�] 

•	 The constraint x1 + x2 ≤ 4 is a valid inequality for [P] 

•	 Branch and cut algorithms modify branch and bound by attempting to strengthen the LP 
relaxations of the candidate problems by adding valid inequalities 

•	 Important: valid inequalities must hold for all feasible solutions to the full model, not just 
the candidate problems 

16 



•	 Added valid inequalities should cut off (render infeasible) the optimal solution to the LP 
relaxations of the candidate problems 

•	 Sophisticated modern ILP codes are typically some variant of branch and cut 

Branch and bound 

•	 It is the starting point for all solution techniques for integer programming. 

•	 Lots of research has been carried out over the past 40 years to make it more and more efficient. 

•	 But, it is an art form to make it efficient. (We did get a sense why.) 

•	 Integer programming is intrinsically difficult. 

•	 How to do branching for general integer programs? 

17




MIT OpenCourseWare
http://ocw.mit.edu 

15.083J / 6.859J Integer Programming and Combinatorial Optimization 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

