Enumerative Methods

A knapsack problem

- Let's focus on maximization integer linear programs with only binary variables
- For example: a knapsack problem with 6 items

$$
\begin{aligned}
\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4}+11 x_{5}+19 x_{6} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4}+4 x_{5}+6 x_{6} \leq 14 \\
& x_{1}, x_{2}, \ldots, x_{6} \in\{0,1\}
\end{aligned}
$$

Complete enumeration

- Complete enumeration systematically considers all possible solutions
- n binary variables $x_{1}, \ldots, x_{n} \Rightarrow 2^{n}$ possible solutions
- After considering all possible solutions, choose best feasible solution
- Usual idea: iteratively break the problem into 2
- For example, first, we consider consider separately the cases that $x_{1}=0$ and $x_{1}=1$

An enumeration tree

- Let's enumerate all possible solutions of our illustrative knapsack problem
- 6 binary decision variables x_{1}, \ldots, x_{6}
- We can enumerate all possible solutions systematically using a tree
- Start with root node
- No variables have been fixed in value

- Branch the possibilities for $x_{1}: x_{1}=0$ or $x_{1}=1$

- Next, branch the possibilities for $x_{2}: x_{2}=0$ or $x_{2}=1$

- Keep building the tree, branching the possibilities for $x_{3}, x_{4}, x_{5}, x_{6}$

- Each node corresponds to a partial solution
- For example, node $4 \Leftrightarrow$ fix $x_{1}=0$ and $x_{2}=1$
- partial solution of node $4=\mathbf{x}^{(4)}=(0,1, \#, \#, \#, \#)$
- Each of the 64 leaves of the tree (nodes at the bottom) corresponds to a solution: a complete assignment of variables

Subtrees of an enumeration tree

- Subtree (or descendants) of node $i=$ nodes obtained from node i from subsequent branching
- Example: red nodes $=$ subtree of node 4
- Recall: node $4 \Leftrightarrow$ partial solution $\mathbf{x}^{(4)}=(0,1, \#, \#, \#, \#)$
- Leaves of subtree of node $4 \Leftrightarrow$ completions of $\mathbf{x}^{(4)}$
- (full) solutions that have the same fixed variables as $\mathbf{x}^{(4)}$
- Idea: stop branching from a node as soon as possible
- Suppose we look at node 4 and conclude none of its descendants can be optimal \Rightarrow Can eliminate $1 / 4$ the solutions at once!

Incumbent solutions

- Goal of branch and bound: find an optimal (or at least a good feasible) solution to some optimization model
- The incumbent solution at any stage of branch and bound is the best feasible solution known so far (in terms of objective value)
- Notation:
- Incumbent solution $\hat{\mathbf{x}}$
- Incumbent solution's objective function value \hat{v}
- Most branch and bound algorithms have subroutines that run at the beginning trying to get a good feasible solution

Eliminating nodes and subtrees

- Let's look at our knapsack problem
- Suppose that we have an incumbent solution $\hat{\mathbf{x}}$ with objective value \hat{v} :

$$
\hat{\mathbf{x}}=(1,1,0,0,0,0) \quad \hat{v}=38
$$

- Let's look at the subtree of node 4 in our enumeration tree

- Node $4 \Leftrightarrow$ partial solution $\mathbf{x}^{(4)}=(0,1, \#, \#, \#, \#)$
- All possible completions of $\mathbf{x}^{(4)} \Leftrightarrow$ Leaves of node 4's subtree
- Candidate problem for node 4: find the best possible completion of $\mathbf{x}^{(4)}$

$$
\begin{aligned}
v^{(4)}=\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4}+11 x_{5}+19 x_{6} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4}+4 x_{5}+6 x_{6} \leq 14 \\
& x_{1}=0, x_{2}=1 \\
& x_{1}, x_{2}, \ldots, x_{6} \in\{0,1\}
\end{aligned}
$$

- LP relaxation gives us upper bound on $v^{(4)}$:

$$
\begin{aligned}
\tilde{v}^{(4)}=\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4}+11 x_{5}+19 x_{6} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4}+4 x_{5}+6 x_{6} \leq 14 \\
& x_{1}=0, x_{2}=1 \\
& 0 \leq x_{i} \leq 1, \quad i=1, \ldots, 6
\end{aligned}
$$

- Solve LP relaxation: $\tilde{v}^{(4)}=44$
- Best completion of $\mathbf{x}^{(4)}$ has value $v^{(4)} \leq \tilde{v}^{(4)}=44$
- Incumbent solution has value $\hat{v}=38$
\Rightarrow It is possible that some completion of $\mathbf{x}^{(4)}$ has a better solution value than 38
\Rightarrow Need to examine solutions that branch from node 4
- What if we had an incumbent solution with value $\hat{v}=45$?
- Then no completion of $\mathbf{x}^{(4)}$ is better than our incumbent, since

$$
v^{(4)} \leq \tilde{v}^{(4)}=44<45=\hat{v}
$$

- We can terminate or fathom node 4: we do not need to branch the subtree of node 4

Branch and bound in a nutshell

- Branch and bound creates the enumeration tree
- one node at a time
- one branch at a time
- Before branching on a node j, it solves the LP relaxation of the node j 's candidate problem
- Candidate problem
* original problem with variables fixed according to the partial solution $\mathbf{x}^{(j)}$ corresponding to node j
* finds best completion of partial solution $\mathbf{x}^{(j)}$
- Depending on the solution to the candidate problem, it either
- terminates node j
- branches on node j
- We will examine 4 cases

Termination by infeasibility

- Node $j \Leftrightarrow$ partial solution $\mathbf{x}^{(j)}$
- Feasible region of candidate problem of node $j \Leftrightarrow$ All possible completions of $\mathbf{x}^{(j)} \Leftrightarrow$ All leaves of node j 's subtree
- Case 1: Termination by infeasibility. The LP relaxation of the candidate problem of node j is infeasible
\Rightarrow The candidate problem of node j is infeasible
\Rightarrow Any completion of the partial solution $\mathbf{x}^{(j)}$ is infeasible for the original problem!
\Rightarrow Terminate node j (do not branch from node j)

Termination by bound

- Notation:

$$
\begin{aligned}
& \hat{v}=\text { value of incumbent solution } \\
& v^{(j)}=\text { optimal value of candidate problem for } j \\
& \tilde{v}^{(j)}=\text { optimal value of LP relaxation } \\
& \quad \text { of candidate problem for } j
\end{aligned}
$$

- Recall: candidate problem of j finds best completion of partial solution $\mathbf{x}^{(j)}$
- Case 2: Termination by bound. $\tilde{v}^{(j)} \leq \hat{v}$
$\Rightarrow v^{(j)} \leq \tilde{v}^{(j)} \leq \hat{v}$
\Rightarrow No completion of $\mathbf{x}^{(j)}$ is better than the incumbent
\Rightarrow Terminate node j (do not branch from node j)

Termination by solving

- Case 3: Termination by solving. $\tilde{v}^{(j)}>\hat{v}$ and the optimal solution $\tilde{\mathbf{x}}^{(j)}$ of the LP relaxation of node j 's candidate problem is integer
- $\tilde{\mathbf{x}}^{(j)}$ is integer $\Rightarrow \tilde{\mathbf{x}}^{(j)}$ is optimal for the candidate problem
$\Rightarrow v^{(j)}=\tilde{v}^{(j)}>\hat{v}$
\Rightarrow We have found a feasible solution that is better than the incumbent
\Rightarrow Save solution $\mathbf{x}^{(j)}$ as new incumbent
\Rightarrow No completion of partial solution $\mathbf{x}^{(j)}$ will be better
\Rightarrow Terminate node j (do not branch from node j)

Branching

- Case 4: Branching. $\tilde{v}^{(j)}>\hat{v}$ and the optimal solution $\tilde{\mathbf{x}}^{(j)}$ of the LP relaxation of node j 's candidate problem is not integer
\Rightarrow It is possible that a completion of the partial solution $\mathbf{x}^{(j)}$ may have a better objective value
- Branch at node j : pick some variable that is not fixed in the partial solution $\mathbf{x}^{(j)}$ and create a child node for each possible value

Active nodes

- A node is called active if it has been analyzed:
- it has no children
- it has not been terminated
- For example:

The active nodes here are 2 and 3

- Initially, the only active node is the root node 0
- Branch and bound stops when there are no more active nodes

LP-based branch and bound algorithm for 0-1 ILPS

- We have essentially described the whole branch and bound algorithm, piecemeal
- We'll give an abbreviated version of the algorithm
- $A=$ set of active nodes
- $\hat{\mathbf{x}}=$ incumbent solution, $\hat{v}=$ value of incumbent solution
- $\mathrm{LP}^{(t)}=\mathrm{LP}$ relaxation of node t^{\prime} s candidate problem
- $\tilde{\mathbf{x}}^{(t)}=$ optimal solution to $\mathrm{LP}^{(t)}, \tilde{v}^{(t)}=$ optimal value of $\mathrm{LP}^{(t)}$

0 . Initialize.

- $A \leftarrow\{$ partial solution with no variables fixed $\}$
- $\hat{\mathrm{x}} \leftarrow \emptyset, \hat{v} \leftarrow-\infty$ (or some external heuristic finds an incumbent)
- Solution counter $t \leftarrow 0$

1. Select.

- If $A=\emptyset$, then $\hat{\mathbf{x}}$ is optimal if it exists, and the problem is infeasible if no incumbent exists
- Else,
- remove a node from A
- label this node t
- categorize t into one of the four cases
- Case 1: Termination by infeasibility $\mathrm{LP}^{(t)}$ is infeasible. Terminate node t.
- Case 2: Termination by bound $\tilde{v}^{(t)} \leq \hat{v}$. Terminate node t.
- Case 3: Termination by solution $\tilde{v}^{(t)}>\hat{v}$ and $\tilde{\mathbf{x}}^{(t)}$ is integer. Terminate node t, set $\hat{\mathbf{x}} \leftarrow \tilde{\mathbf{x}}^{(t)}$ and $\hat{v} \leftarrow \tilde{v}^{(t)}$
- Case 4: Branching $\tilde{v}^{(t)}>\hat{v}$ and $\tilde{\mathbf{x}}^{(t)}$ is not integer. Choose a variable that is not fixed in partial solution $\mathbf{x}^{(t)}$ and branch on all its possible values
- Increment solution counter $t \leftarrow t+1$, goto Step 1
- Some areas of vagueness:
- Which active node to choose in Step 1?
* In principle, can select any active node
* One potential rule: depth first search - select active node with the most components fixed (deepest in tree)
- Which variable to branch on?
* In principle, can select any variable not fixed at node's partial solution
* One potential rule: choose variable whose LP optimal value at that node is fractional and closest to integer

Branch and bound, illustrated

- LP relaxation of candidate problem at root node:

$$
\begin{array}{rll}
\mathrm{LP}^{(0)}: & \max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4}+11 x_{5}+19 x_{6} \\
& \text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4}+4 x_{5}+6 x_{6} \leq 14 \\
& 0 \leq x_{i} \leq 1 \quad i=1, \ldots, 6
\end{array}
$$

- Optimal solution: $\tilde{v}^{(0)}=44.4, \tilde{x}^{(0)}=(1,0.43,0,0,0,1)$
\Rightarrow Case 4: branch on x_{2}

- LP relaxation of candidate problem at root node $\mathrm{LP}^{(1)}$:

$$
\begin{aligned}
\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4}+11 x_{5}+19 x_{6} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4}+4 x_{5}+6 x_{6} \leq 14 \\
& x_{2}=0 \\
& 0 \leq x_{i} \leq 1 \quad i=1, \ldots, 6
\end{aligned}
$$

- Optimal solution: $\tilde{v}^{(1)}=44, \tilde{x}^{(1)}=(1,0,0.75,0,0,1)$
\Rightarrow Case 4: branch on x_{3}

- Solve $\mathrm{LP}^{(2)}: \tilde{v}^{(2)}=43.25, \tilde{x}^{(2)}=(1,0,0,0,0.75,1)$
\Rightarrow Case 4: branch on x_{5}

- Solve $\mathrm{LP}^{(3)}: \tilde{v}^{(3)}=43, \tilde{x}^{(3)}=(1,0,0,1,0,1)$
- Solving $\mathrm{LP}^{(3)}$ yields integer solution that is better than incumbent
\Rightarrow Case 3: replace incumbent with $\tilde{x}^{(3)}$, terminate node 3

- Solve $\mathrm{LP}^{(4)}: \tilde{v}^{(4)}=42.8, \tilde{x}^{(4)}=(1,0,0,0,1,0.83)$
\Rightarrow Case 2: terminate node 4 by bound

- Solve $\mathrm{LP}^{(5)}: \tilde{v}^{(5)}=43.8, \tilde{x}^{(5)}=(1,0,1,0,0,0.83)$
\Rightarrow Case 4: branch on x_{6}

- Solve $\mathrm{LP}^{(6)}: \tilde{v}^{(6)}=41.6, \tilde{x}^{(6)}=(1,0,1,0.33,1,0)$
\Rightarrow Case 2: terminate node 6 by bound

- Solve $\mathrm{LP}^{(7)}: \tilde{v}^{(7)}=43.8, \tilde{x}^{(7)}=(0.8,0,1,0,0,1)$
\Rightarrow Case 4: branch on x_{1}

- Solve $\mathrm{LP}^{(8)}: \tilde{v}^{(8)}=42, \tilde{x}^{(8)}=(0,0,1,0,1,1)$
\Rightarrow Case 2: terminate node 8 by bound

- Solve $\mathrm{LP}^{(9)}$: infeasible
\Rightarrow Case 2: terminate node 9 by infeasibility

- Solve $\mathrm{LP}^{(10)}: \tilde{v}^{(10)}=44.3, \tilde{x}^{(10)}=(1,1,0,0,0,0.33)$
\Rightarrow Case 4: branch on x_{6}
- And we keep on going in a similar manner until there are no active nodes left

- We solved 29 LPs to get an optimal solution to the knapsack problem
- We found the optimal solution at the third iteration, but could not conclude that this solution was optimal until the 28th iteration
- What can we say about the quality of the solution we obtained at the third iteration?

Branch and bound family tree terminology

- Easiest to explain by a picture:

- Node 1 is the parent of nodes 3 and 4
- Nodes 1 and 2 are the children of node 0

Parent bounds

- Suppose we have a maximization integer linear program
- Example:

$-\mathbf{x}^{(j)}=$ partial solution at node j
- $\mathrm{IP}^{(j)}=$ node j 's candidate problem
$-\mathrm{LP}^{(j)}=\mathrm{LP}$ relaxation of node j 's candidate problem
$-v^{(j)}=$ optimal value of $\mathrm{IP}^{(j)}$
$-\tilde{v}^{(j)}=$ optimal value of $\mathrm{LP}^{(j)}$
- $v^{(3)}=$ value of best completion of $\mathbf{x}^{(3)}$
- $\mathrm{LP}^{(3)}=\mathrm{LP}^{(1)}+$ one additional variable fixed $\Rightarrow \tilde{v}^{(3)} \leq \tilde{v}^{(1)}$
$\Rightarrow v^{(3)} \leq \tilde{v}^{(3)} \leq \tilde{v}^{(1)}$
- $\mathrm{LP}^{(1)}$ also provides an upper bound on the value of the best completion of $\mathbf{x}^{(3)}$

Parent bounds

- For maximization ILPs, the optimal value of the LP relaxation of a parent node's candidate problem provides an upper bound on the objective value of any completion of its children
- Similar reasoning for minimization ILPs

Terminating nodes with parent bounds

- Can use parent bounds to terminate some nodes even faster
- Example:

- α, β, and γ are active nodes
- Suppose new incumbent found at node 3 has value $\hat{v}=70$
- Parent bound: all completions of node 2 have value ≤ 65
\Rightarrow No point in exploring β, γ, can terminate them immediately
- Whenever branch and bound discovers a new incumbent solution, any active node whose parent bound is no better than the value of the new incumbent solution can be immediately terminated

How good is the current incumbent?

- Sometimes just finding a feasible solution is difficult
- Would be nice to approximate how close a given solution is to optimal
- LP relaxations and parent bounds can help us do this

$$
\hat{v}=-\infty 43, \hat{\mathbf{x}}=\tilde{\mathbf{x}}^{(3)}
$$

- At node 3 , we get a new incumbent with value $\hat{v}=43$
- Any solution that might improve upon the incumbent is a completion of some active partial solution
\Rightarrow Using parent bounds on α, β, γ, we can conclude at this point in branch and bound that the optimal value must be at most

$$
\max \{44.4,44,43.25\}=44.4
$$

- What if we use the current incumbent as an approximation to the optimal solution?
- The current incumbent is at most

$$
\frac{(\text { best possible })-(\text { best known })}{\text { best known }}=\frac{44.4-43}{43}=3.25 \%
$$

below optimal

- For maximization ILPs, we can obtain an upper bound on the optimal value by
- looking at the parent bound of all active nodes, and
- taking the highest parent bound
- Can use this to obtain a bound in the error in using the incumbent as an approximation

Selecting active nodes

- We used the depth first search rule in our illustration
- Other ideas:
- Best first search selects at each iteration an active node with the best parent bound
- Depth forward best back search selects
* a deepest active node after a branching
* an active node with best parent bound after a termination

Branch and cut

$$
\begin{aligned}
{[\mathrm{P}] \max } & 3 x_{1}+4 x_{2} \\
\text { s.t. } & 5 x_{1}+8 x_{2} \leq 24 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer } \\
& \\
{\left[\mathrm{P}^{\prime \prime}\right] \max } & 3 x_{1}+4 x_{2} \\
\text { s.t. } & 5 x_{1}+8 x_{2} \leq 24 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- Add constraint $x_{1}+x_{2} \leq 4$
- Note: this constraint holds for all integer feasible solutions, but cuts off feasible solutions from the LP relaxation $\left[\mathrm{P}^{\prime}\right]$
- The constraint $x_{1}+x_{2} \leq 4$ is a valid inequality for $[\mathrm{P}]$
- Branch and cut algorithms modify branch and bound by attempting to strengthen the LP relaxations of the candidate problems by adding valid inequalities
- Important: valid inequalities must hold for all feasible solutions to the full model, not just the candidate problems
- Added valid inequalities should cut off (render infeasible) the optimal solution to the LP relaxations of the candidate problems
- Sophisticated modern ILP codes are typically some variant of branch and cut

Branch and bound

- It is the starting point for all solution techniques for integer programming.
- Lots of research has been carried out over the past 40 years to make it more and more efficient.
- But, it is an art form to make it efficient. (We did get a sense why.)
- Integer programming is intrinsically difficult.
- How to do branching for general integer programs?

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

