Approximation Algorithms I

The knapsack problem

- Input: nonnegative numbers $p_{1}, \ldots, p_{n}, a_{1}, \ldots, a_{n}, b$.

$$
\begin{array}{ll}
\max & \sum_{j=1}^{n} p_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{j} x_{j} \leq b \\
& x \in \mathbb{Z}_{+}^{n}
\end{array}
$$

Additive performance guarantees

Theorem 1. There is a polynomial-time algorithm A for the knapsack problem such that

$$
\begin{equation*}
A(I) \geq O P T(I)-K \quad \text { for all instances } I \tag{1}
\end{equation*}
$$

for some constant K if and only if $P=N P$.
Proof:

- Let A be a polynomial-time algorithm satisfying (1).
- Let $I=\left(p_{1}, \ldots, p_{n}, a_{1}, \ldots, a_{n}, b\right)$ be an instance of the knapsack problem.
- Let $I^{\prime}=\left(p_{1}^{\prime}:=(K+1) p_{1}, \ldots, p_{n}^{\prime}:=(K+1) p_{n}, a_{1}, \ldots, a_{n}, b\right)$ be a new instance.
- Clearly, x^{*} is optimal for I iff it is optimal for I^{\prime}.
- If we apply A to I^{\prime} we obtain a solution x^{\prime} such that

$$
p^{\prime} x^{*}-p^{\prime} x^{\prime} \leq K
$$

- Hence,

$$
p x^{*}-p x^{\prime}=\frac{1}{K+1}\left(p^{\prime} x^{*}-p^{\prime} x^{\prime}\right) \leq \frac{K}{K+1}<1
$$

- Since $p x^{\prime}$ and $p x^{*}$ are integer, it follows that $p x^{\prime}=p x^{*}$, that is x^{\prime} is optimal for I.
- The other direction is trivial.
- Note that this technique applies to any combinatorial optimization problem with linear objective function.

Approximation algorithms

- There are few (known) NP-hard problems for which we can find in polynomial time solutions whose value is close to that of an optimal solution in an absolute sense. (Example: edge coloring.)
- In general, an approximation algorithm for an optimization Π produces, in polynomial time, a feasible solution whose objective function value is within a guaranteed factor of that of an optimal solution.

A first greedy algorithm for the knapsack problem

1. Rearrange indices so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
2. $\mathrm{FOR} j=1 \mathrm{TO} n \mathrm{DO}$
3. $\operatorname{set} x_{j}:=\left\lfloor\frac{b}{a_{j}}\right\rfloor$ and $b:=b-\left\lfloor\frac{b}{a_{j}}\right\rfloor$.
4. Return x.

- This greedy algorithm can produce solutions that are arbitrarily bad.
- Consider the following example, with $\alpha \geq 2$:

$$
\begin{array}{llr}
\max & \alpha x_{1}+(\alpha-1) x_{2} & \\
\text { s.t. } & \alpha x_{1}+x_{2} & \leq \alpha \\
& x_{1}, x_{2} & \in \mathbb{Z}_{+}
\end{array}
$$

- Obviously, $\mathrm{OPT}=\alpha(\alpha-1)$ and GREEDY $_{1}=\alpha$.
- Hence,

$$
\frac{\text { GREEDY }_{1}}{\text { OPT }}=\frac{1}{\alpha-1} \rightarrow 0
$$

A second greedy algorithm for the knapsack problem

1. Rearrange indices so that $p_{1} / a_{1} \geq p_{2} / a_{2} \geq \cdots \geq p_{n} / a_{n}$.
2. $\operatorname{FOR} j=1 \mathrm{TO} n \mathrm{DO}$
3. $\operatorname{set} x_{j}:=\left\lfloor\frac{b}{a_{j}}\right\rfloor$ and $b:=b-\left\lfloor\frac{b}{a_{j}}\right\rfloor$.
4. Return x.

Theorem 2. For all instances I of the knapsack problem,

$$
\operatorname{GREEDY}_{2}(I) \geq \frac{1}{2} \mathrm{OPT}(\mathrm{I})
$$

Proof:

- We may assume that $a_{1} \leq b$.
- Let x be the greedy solution, and let x^{*} be an optimal solution.
- Obviously,

$$
p x \geq p_{1} x_{1}=p_{1}\left\lfloor\frac{b}{a_{1}}\right\rfloor .
$$

- Also,

$$
p x^{*} \leq p_{1} \frac{b}{a_{1}} \leq p_{1}\left(\left\lfloor\frac{b}{a_{1}}\right\rfloor+1\right) \leq 2 p_{1}\left\lfloor\frac{b}{a_{1}}\right\rfloor \leq 2 p x .
$$

- This analysis is tight.
- Consider the following example:

$$
\begin{array}{lccr}
\max & 2 \alpha x_{1} & +2(\alpha-1) x_{2} & \\
\text { s.t. } & \alpha x_{1} & +(\alpha-1) x_{2} & \leq 2(\alpha-1) \\
& & x_{1}, x_{2} & \in \mathbb{Z}_{+}
\end{array}
$$

- Obviously, $p_{1} / a_{1} \geq p_{2} / a_{2}$, and GREEDY $2=2 \alpha$ whereas OPT $=4(\alpha-1)$. Hence,

$$
\frac{\text { GREEDY }_{2}}{\mathrm{OPT}}=\frac{2 \alpha}{4(\alpha-1)} \rightarrow \frac{1}{2}
$$

The 0/1-knapsack problem

- Input: nonnegative numbers $p_{1}, \ldots, p_{n}, a_{1}, \ldots, a_{n}, b$.

$$
\begin{array}{ll}
\max & \sum_{j=1}^{n} p_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{j} x_{j} \leq b \\
& x \in\{0,1\}^{n}
\end{array}
$$

A greedy algorithm for the 0/1-knapsack problem

1. Rearrange indices so that $p_{1} / a_{1} \geq p_{2} / a_{2} \geq \cdots \geq p_{n} / a_{n}$.
2. $\operatorname{FOR} j=1 \mathrm{TO} n \mathrm{DO}$
3. IF $a_{j}>b$, THEN $x_{j}:=0$
4. ELSE $x_{j}:=1$ and $b:=b-a_{j}$.

5. Return x.

- The greedy algorithm can be arbitrarily bad for the 0/1-knapsack problem.
- Consider the following example:

$$
\begin{array}{ccr}
\max & x_{1}+\alpha x_{2} & \leq \alpha \\
\text { s.t. } & x_{1}+\alpha x_{2} & \in\{0.1\}
\end{array}
$$

- Note that $\mathrm{OPT}=\alpha$, whereas GREEDY $_{2}=1$.
- Hence,

$$
\frac{\text { GREEDY }_{2}}{\mathrm{OPT}}=\frac{1}{\alpha} \rightarrow 0
$$

Theorem 3. Given an instance I of the $0 / 1$ knapsack problem, let

$$
A(I):=\max \left\{\operatorname{GREEDY}_{2}(I), p_{\max }\right\}
$$

where $p_{\max }$ is the maximum profit of an item. Then

$$
A(I) \geq \frac{1}{2} \mathrm{OPT}(I)
$$

Proof:

- Let j be the first item not included by the greedy algorithm.
- The profit at that point is

$$
\bar{p}_{j}:=\sum_{i=1}^{j-1} p_{i} \leq \text { GREEDY }_{2}
$$

- The overall occupancy at this point is

$$
\bar{a}_{j}:=\sum_{i=1}^{j-1} \leq b .
$$

- We will show that

$$
\mathrm{OPT} \leq \bar{p}_{j}+p_{j} .
$$

(If this is true, we are done.)

- Let x^{*} be an optimal solution. Then:

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} x_{i}^{*} & \leq \sum_{i=1}^{j-1} p_{i} x_{i}^{*}+\sum_{i=j}^{n} \frac{p_{j} a_{i}}{a_{j}} x_{i}^{*} \\
& =\frac{p_{j}}{a_{j}} \sum_{i=1}^{n} a_{i} x_{i}^{*}+\sum_{i=1}^{j-1}\left(p_{i}-\frac{p_{j}}{a_{j}} a_{i}\right) x_{i}^{*} \\
& \leq \frac{p_{j}}{a_{j}} b+\sum_{i=1}^{j-1}\left(p_{i}-\frac{p_{j}}{a_{j}} a_{i}\right) \\
& =\sum_{i=1}^{j-1} p_{i}+\frac{p_{j}}{a_{j}}\left(b-\sum_{i=1}^{j-1} a_{i}\right) \\
& =\bar{p}_{j}+\frac{p_{j}}{a_{j}}\left(b-\bar{a}_{j}\right)
\end{aligned}
$$

- Since $\bar{a}_{j}+a_{j}>b$, we obtain

$$
\mathrm{OPT}=\sum_{i=1}^{n} p_{i} x_{i}^{*} \leq \bar{p}_{j}+\frac{p_{j}}{a_{j}}\left(b-\bar{a}_{j}\right)<\bar{p}_{j}+p_{j} .
$$

- Recall that there is an algorithm that solves the $0 / 1$-knapsack problem in $\mathrm{O}\left(n^{2} p_{\max }\right)$ time:
- Let $f(i, q)$ be the size of the subset of $\{1, \ldots, i\}$ whose total profit is q and whose total size is minimal.
- Then

$$
f(i+1, q)=\min \left\{f(i, q), a_{i+1}+f\left(i, q-p_{i+1}\right)\right\} .
$$

- We need to compute $\max \{q: f(n, q) \leq b\}$.
- In particular, if the profits of items were small numbers (i.e., bounded by a polynomial in n), then this would be a regular polynomial-time algorithm.

An FPTAS for the 0/1-knapsack problem

1. Given $\epsilon>0$, let $K:=\frac{\epsilon p_{\max }}{n}$.
2. FOR $j=1$ TO n DO $p_{j}^{\prime}:=\left\lfloor\frac{p_{j}}{K}\right\rfloor$.
3. Solve the instance $\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}, a_{1}, \ldots, a_{n}, b\right)$ using the dynamic program.
4. Return this solution.

Theorem 4. This algorithm is a Fully Polynomial-Time Approximation Scheme for the 0/1knapsack problem.

That is, given an instance I and an $\epsilon>0$, it finds in time polynomial in the input size of I and $1 / \epsilon$ a solution x^{\prime} such that

$$
p x^{\prime} \geq(1-\epsilon) p x^{*}
$$

Proof:

- Note that $p_{j}-K \leq K p_{j}^{\prime} \leq p_{j}$.
- Hence, $p x^{*}-K p^{\prime} x^{*} \leq n K$.
- Moreover,

$$
p x^{\prime} \geq K p^{\prime} x^{\prime} \geq K p^{\prime} x^{*} \geq p x^{*}-n K=p x^{*}-\epsilon p_{\max } \geq(1-\epsilon) p x^{*}
$$

Fully Polynomial Time Approximation Schemes

- Let Π be an optimization problem. Algorithm A is an approximation scheme for Π if on input (I, ϵ), where I is an instance of Π and $\epsilon>0$ is an error parameter, it outputs a solution of objective function value $A(I)$ such that
$-A(I) \leq(1+\epsilon) \mathrm{OPT}(I)$ if Π is a minimization problem.
$-A(I) \geq(1-\epsilon) \mathrm{OPT}(I)$ if Π is a maximization problem.
- A is a polynomial-time approximation scheme (PTAS), if for each fixed $\epsilon>0$, its running time is bounded by a polynomial in the size of I.
- A is a fully polynomial-time approximation scheme (FPTAS), if its running time is bounded by a polynomial in the size of I and $1 / \epsilon$.

Theorem 5. Let p be a polynomial and let Π be an NP-hard minimization problem with integervalued objective function such that on any instance $I \in \Pi, \operatorname{OPT}(I)<p\left(|I|_{u}\right)$. If Π admits an FPTAS, then it also admits a pseudopolynomial-time algorithm.

Proof:

- Suppose there is an FPTAS with running time $q(|I|, 1 / \epsilon)$, for some polynomial q.
- Choose $\epsilon:=1 / p\left(|I|_{u}\right)$ and run the FPTAS.
- The solution has objective function value at most

$$
(1+\epsilon) \operatorname{OPT}(I)<\operatorname{OPT}(I)+\epsilon p\left(|I|_{u}\right)=\operatorname{OPT}(I)+1
$$

- Hence, the solution is optimal.
- The running time is $q\left(|I|, p\left(|I|_{u}\right)\right)$, i.e., polynomial in $|I|_{u}$.

Corollary 6. Let Π be an NP-hard optimization problem satisfying the assumptions of the previous theorem. If Π is strongly NP-hard, then Π does not admit an FPTAS, assuming $\mathrm{P} \neq \mathrm{NP}$.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

