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Approximation Algorithms I 

The knapsack problem 

•	 Input: nonnegative numbers p1, . . . , pn, a1, . . . , an, b. 

n

max pj xj 

j=1 

n

s.t. aj xj ≤ b 
j=1 

x ∈ Zn 
+ 

Additive performance guarantees 

Theorem 1. There is a polynomial-time algorithm A for the knapsack problem such that 

A(I) ≥ OPT (I) − K for all instances I (1) 

for some constant K if and only if P = NP. 

Proof: 

•	 Let A be a polynomial-time algorithm satisfying (1). 

•	 Let I = (p1, . . . , pn, a1, . . . , an, b) be an instance of the knapsack problem.


Let I � = (p�1 := (K + 1)p1, . . . , p
� := (K + 1)pn, a1, . . . , an, b) be a new instance.
•	 n 

•	 Clearly, x∗ is optimal for I iff it is optimal for I �. 

•	 If we apply A to I � we obtain a solution x� such that


p�x∗ − p�x� ≤ K.


•	 Hence,

1 K


px∗ − px� = 
K + 1

(p�x∗ − p�x�) ≤ 
K + 1 

< 1. 

•	 Since px� and px∗ are integer, it follows that px� = px∗, that is x� is optimal for I.


The other direction is trivial.
• 

•	 Note that this technique applies to any combinatorial optimization problem with linear ob
jective function. 
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Approximation algorithms 

•	 There are few (known) NP-hard problems for which we can find in polynomial time solutions 
whose value is close to that of an optimal solution in an absolute sense. (Example: edge 
coloring.) 

•	 In general, an approximation algorithm for an optimization Π produces, in polynomial time, 
a feasible solution whose objective function value is within a guaranteed factor of that of an 
optimal solution. 

A first greedy algorithm for the knapsack problem 

1. Rearrange indices so that p1 ≥ p2 ≥ · · · ≥ pn. 

2. FOR j = 1 TO n DO 

b	 b
3.	 set xj := and b := b − . 

aj aj 

4. Return x. 

•	 This greedy algorithm can produce solutions that are arbitrarily bad. 

•	 Consider the following example, with α ≥ 2:


max αx1 + (α − 1)x2


s.t.	 αx1 + x2 ≤ α 

x1, x2 ∈ Z+ 

•	 Obviously, OPT = α(α − 1) and GREEDY1 = α. 

•	 Hence, 
GREEDY1 1 

= 0.
OPT α − 1 

→ 

A second greedy algorithm for the knapsack problem 

1. Rearrange indices so that p1/a1 ≥ p2/a2 ≥ · · · ≥ pn/an. 

2. FOR j = 1 TO n DO � b �	 � b � 
3.	 set xj := and b := b − . 

aj aj 

4. Return x. 

Theorem 2. For all instances I of the knapsack problem, 

1
GREEDY2(I) ≥ 

2 
OPT(I). 
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Proof: 

• We may assume that a1 ≤ b. 

• Let x be the greedy solution, and let x∗ be an optimal solution. 

• Obviously,	 � b 
px ≥ p1x1 = p1 . 

a1 

• Also,	
b 

�� b � � � b � 
px∗ ≤ p1 ≤ p1 + 1 ≤ 2p1 ≤ 2px. 

a1 a1 a1 

• This analysis is tight. 

•	 Consider the following example:


max 2αx1 + 2(α − 1)x2


s.t.	 αx1 + (α − 1)x2 ≤ 2(α − 1) 
x1, x2 ∈ Z+ 

•	 Obviously, p1/a1 ≥ p2/a2, and GREEDY2 = 2α whereas OPT = 4(α − 1). Hence, 

GREEDY2 2α 1 
=	 .

OPT 4(α − 1) 
→ 

2

The 0/1-knapsack problem 

• Input: nonnegative numbers p1, . . . , pn, a1, . . . , an, b. 

n

max pj xj 

j=1 

n

s.t.	 aj xj ≤ b 
j=1 

x ∈ {0, 1}n 

A greedy algorithm for the 0/1-knapsack problem 

1. Rearrange indices so that p1/a1 ≥ p2/a2 ≥ · · · ≥ pn/an. 

2. FOR j = 1 TO n DO 

3. IF aj > b, THEN xj := 0 

4.	 ELSE xj := 1 and b := b − aj .
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5. Return x. 

• The greedy algorithm can be arbitrarily bad for the 0/1-knapsack problem. 

•	 Consider the following example:


max x1 + αx2


s.t.	 x1 + αx2 ≤ α 

x1, x2 ∈ {0, 1} 

• Note that OPT = α, whereas GREEDY2 = 1. 

•	 Hence,

GREEDY2 1


= 0.
OPT α 

→ 

Theorem 3. Given an instance I of the 0/1 knapsack problem, let 

A(I) := max GREEDY2(I), pmax , 

where pmax is the maximum profit of an item. Then 

1 
A(I) ≥ 

2 
OPT(I).


Proof:


• Let j be the first item not included by the greedy algorithm. 

• The profit at that point is 
j−1

p̄j := pi ≤ GREEDY2. 
i=1 

• The overall occupancy at this point is 

j−1

āj := ≤ b. 
i=1 

We will show that • 
OPT ≤ p̄j + pj .


(If this is true, we are done.)
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•	 � � 

� � 

•	 Let x∗ be an optimal solution. Then: 

n j−1 n

pix
∗ 
i ≤ pix

∗ 
i + 

p

a
j a

j

i 
x∗ 

i 
i=1 i=1 i=j 

pj
n j−1 � pj � 

= aix
∗ 
i + pi − ai x∗ 

i aj aji=1 i=1 

j−1
pj 

� � pj � 
≤ 

aj 
b + pi − 

aj 
ai 

i=1 �j−1
pj � j−1 � 

= pi + b − ai 
aji=1 i=1 

= p̄j + 
pj � 

b − āj 
� 

aj 

•	 Since āj + aj > b, we obtain 

n

OPT = 
� 

pixi 
∗ ≤ p̄j + 

pj � 
b − āj 

� 
< p̄j + pj . 

aji=1 

•	 Recall that there is an algorithm that solves the 0/1-knapsack problem in O(n2pmax) time: 

•	 Let f(i, q) be the size of the subset of {1, . . . , i} whose total profit is q and whose total size 
is minimal. 

Then 
f(i + 1, q) = min f(i, q), ai+1 + f(i, q − pi+1) . 

•	 We need to compute max{q : f(n, q) ≤ b}. 

•	 In particular, if the profits of items were small numbers (i.e., bounded by a polynomial in n), 
then this would be a regular polynomial-time algorithm. 

An FPTAS for the 0/1-knapsack problem 

1. Given � > 0, let K := 
�pmax . 

n 

2. FOR j = 1 TO n DO p�j := 
pj . 
K 

3. Solve the instance (p�1, . . . , p
�
n, a1, . . . , an, b) using the dynamic program. 

4. Return this solution. 
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Theorem 4. This algorithm is a Fully Polynomial-Time Approximation Scheme for the 0/1
knapsack problem. 

That is, given an instance I and an � > 0, it finds in time polynomial in the input size of I and 
1/� a solution x� such that 

px� ≥ (1 − �)px∗. 

Proof: 

•	 Note that pj − K ≤ Kp�j ≤ pj . 

•	 Hence, px∗ − Kp�x∗ ≤ nK. 

•	 Moreover, 

px� ≥ Kp�x� ≥ Kp�x∗ ≥ px∗ − nK = px∗ − �pmax ≥ (1 − �)px∗. 

Fully Polynomial Time Approximation Schemes 

•	 Let Π be an optimization problem. Algorithm A is an approximation scheme for Π if on input 
(I, �), where I is an instance of Π and � > 0 is an error parameter, it outputs a solution of 
objective function value A(I) such that 

–	 A(I) ≤ (1 + �)OPT(I) if Π is a minimization problem. 

–	 A(I) ≥ (1 − �)OPT(I) if Π is a maximization problem. 

•	 A is a polynomial-time approximation scheme (PTAS), if for each fixed � > 0, its running 
time is bounded by a polynomial in the size of I. 

•	 A is a fully polynomial-time approximation scheme (FPTAS), if its running time is bounded 
by a polynomial in the size of I and 1/�. 

Theorem 5. Let p be a polynomial and let Π be an NP-hard minimization problem with integer-
valued objective function such that on any instance I ∈ Π, OPT(I) < p(|I|u). If Π admits an 
FPTAS, then it also admits a pseudopolynomial-time algorithm. 

Proof: 

•	 Suppose there is an FPTAS with running time q(|I|, 1/�), for some polynomial q. 

•	 Choose � := 1/p(|I|u) and run the FPTAS. 

•	 The solution has objective function value at most


(1 + �)OPT(I) < OPT(I) + �p(|I|u) = OPT(I) + 1.


•	 Hence, the solution is optimal. 

•	 The running time is q(|I|, p(|I|u)), i.e., polynomial in |I|u. 

Corollary 6. Let Π be an NP-hard optimization problem satisfying the assumptions of the previous 
theorem. If Π is strongly NP-hard, then Π does not admit an FPTAS, assuming P = NP� . 
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