15.083J Integer Programming and Combinatorial Optimization

Fall 2009

Approximation Algorithms II

The traveling salesman problem

Theorem 1. For any polynomial time computable function $\alpha(n)$, TSP cannot be approximated within a factor of $\alpha(n)$, unless P = NP.

Proof:

• Suppose there is an approximation algorithm A such that

 $A(I) \leq \alpha(n) \cdot \text{OPT}(I)$ for all instances I of TSP.

- We will show that A can be used to decide whether a graph contains a Hamiltonian cycle (which is NP-hard), implying P = NP.
- Let G be an undirected graph. We define a complete graph G' on the same vertices as follows:
- Edges that appear in G are assigned a weight of 1.
- Edges that do not exist in G get a weight of $\alpha(n) \cdot n$.
- If G has a Hamiltonian cycle, the corresponding tour in G' has a cost of n.
- If G has no Hamiltonian cycle, any tour in G has cost at least $\alpha(n) \cdot n + 1$.
- Hence, if we run A on G' it has to return a solution of cost $\leq \alpha(n) \cdot n$ in the first case, and a solution of cost $> \alpha(n) \cdot n$ in the second case.
- Thus, A can be used to decide whether G contains a Hamiltonian cycle.

The metric traveling salesman problem

A 2-approximation algorithm for Δ TSP:

- 1. Find a minimum spanning tree T of G.
- 2. Double every edge of T to obtain a Eulerian graph.
- 3. Find a Eulerian tour \mathcal{T} on this graph.
- 4. Output the tour that visits the vertices of G in the order of their first appearance in \mathcal{T} . Let \mathcal{C} be this tour.

Proof:

- Note that $cost(T) \leq OPT$ because deleting an edge from an optimal tour yields a spanning tree.
- Moreover, $cost(\mathcal{T}) = 2 \cdot cost(\mathcal{T})$.
- Because of the triangle inequality, $\operatorname{cost}(\mathcal{C}) \leq \operatorname{cost}(\mathcal{T})$.
- Hence,

$$\cot(\mathcal{C}) \leq 2 \cdot \text{OPT}.$$

- A 3/2-approximation algorithm for Δ TSP:
- 1. Find a minimum spanning tree T of G.
- 2. Compute a min-cost perfect matching M on the set of odd-degree vertices of T.
- 3. Add M to T to obtain a Eulerian graph.
- 4. Find a Eulerian tour \mathcal{T} on this graph.
- 5. Output the tour that visits the vertices of G in the order of their first appearance in \mathcal{T} . Let \mathcal{C} be this tour.

Proof:

- Let τ be an optimal tour, i.e., $cost(\tau) = OPT$.
- Let τ' be the tour on the odd-degree nodes of T, obtained by short-cutting τ .
- By triangle inequality, $cost(\tau') \leq cost(\tau)$.
- Note that τ' is the union of two perfect matchings.
- The cheaper of these two matchings has cost at most $\cot(\tau')/2$.
- Hence,

$$cost(\mathcal{C}) \le cost(\mathcal{T}) \le cost(\mathcal{T}) + cost(\mathcal{M}) \le OPT + \frac{1}{2}OPT.$$

The set cover problem

Input: $U = \{1, \ldots, n\}, \mathcal{S} = \{S_1, \ldots, S_k\} \subseteq 2^U, c : \mathcal{S} \to \mathbb{Z}_+.$

Output: $J \subseteq \{1, \ldots, k\}$ such that $\bigcup_{i \in J} S_i = U$ and $\sum_{i \in J} c(S_i)$ is minimal.

• Special case: vertex cover problem.

A greedy algorithm:

1. $C := \emptyset$.

2. WHILE $C \neq U$ DO

3. Let
$$S := \arg\min\left\{\frac{c(S)}{|S\setminus C|} : S \in \mathcal{S}\right\}$$

4. Let
$$\alpha := \frac{c(S)}{|S \setminus C|}$$
.

5. Pick S, and for each $e \in S \setminus C$, set price $(e) = \alpha$.

$$6. \qquad C := C \cup S.$$

- 7. Output the picked sets.
- Let e_1, \ldots, e_n be the order in which the elements of U are covered by the greedy algorithm.

Lemma 2. For each $k \in \{1, ..., n\}$, $price(e_k) \leq OPT/(n - k + 1)$.

Proof:

- Let i(k) be the iteration in which e_k is covered.
- Let $\mathcal{O} \subseteq \mathcal{S}$ be the sets chosen by an optimal solution.
- Let $\mathcal{O}_{i(k)} \subseteq \mathcal{O}$ be the sets in \mathcal{O} not (yet) chosen by the greedy algorithm in iterations $1, \ldots, i(k)$.
- Note that $\{e_k, \ldots, e_n\} \subseteq \bigcup_{S \in \mathcal{O}_{i(k)}} S$ and $\sum_{S \in \mathcal{O}_{i(k)}} c(S) \leq OPT$.
- Hence, there exists a set $S \in \mathcal{O}_k$ of average cost $\frac{c(S)}{|S \setminus C|}$ at most $\frac{\text{OPT}}{n-k+1}$.
- Since e_k is covered by the set with the smallest average cost,

$$\operatorname{price}(e_k) \leq \frac{\operatorname{OPT}}{n-k+1}.$$

Theorem 3. The greedy algorithm is an $(\ln n + 1)$ -approximation algorithm.

Proof:

- Since the cost of each set picked is distributed among the new elements covered, the total cost of the set cover returned by the greedy algorithm is equal to $\sum_{k=1}^{n} \operatorname{price}(e_k)$.
- By the previous lemma,

$$\sum_{k=1}^{n} \operatorname{price}(e_k) \le \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \cdot \operatorname{OPT} = H_n \cdot \operatorname{OPT}.$$

An integer programming formulation:

$$\min \sum_{S \in \mathcal{S}} c(S) x_S$$
s.t.
$$\sum_{S \ni e} x_S \ge 1 \qquad e \in U$$

$$x_S \in \{0, 1\} \qquad S \in \mathcal{S}$$

And its linear programming relaxation:

$$\min \sum_{S \in \mathcal{S}} c(S) x_S$$
s.t.
$$\sum_{S \ni e} x_S \ge 1 \qquad e \in U$$

$$x_S \ge 0 \qquad S \in \mathcal{S}$$

And its dual:

"Dual Fitting:"

Lemma 4. The vector y defined by $y_e := \frac{price(e)}{H_n}$ is a feasible solution to the dual linear program.

Proof:

- Consider a set $S \in \mathcal{S}$ consisting of k elements.
- Number the elements in the order in which they are covered by the greedy algorithm, say e_1, \ldots, e_k .

- Consider the iteration in which the algorithm covers e_i .
- At this point, S contains at least k i + 1 uncovered elements.
- S itself can cover e_i at an average cost of at most $\frac{c(S)}{k-i+1}$.
- Hence, $\operatorname{price}(e_i) \leq \frac{c(S)}{k-i+1}$ and $y_{e_i} \leq \frac{1}{H_n} \cdot \frac{c(S)}{k-i+1}$.
- Overall, $\sum_{i=1}^{k} y_{e_i} \le \frac{c(S)}{H_n} \cdot \left(\frac{1}{k} + \frac{1}{k-1} + \dots + \frac{1}{1}\right) = \frac{H_k}{H_n} \cdot c(S).$

Theorem 5. The greedy algorithm is an H_n -approximation algorithm.

Proof:

$$\sum_{e \in U} \operatorname{price}(e) = H_n \cdot \sum_{e \in U} y_e \le H_n \cdot \operatorname{LP} \le H_n \cdot \operatorname{OPT}.$$

"LP rounding:"

- 1. Find an optimal solution to the LP relaxation.
- 2. Pick all sets S for which $x_S \ge 1/f$ in this solution.

Here, f is the frequency of the most frequent element.

Theorem 6. The LP rounding algorithm achieves an approximation factor of f.

Proof:

- Let \mathcal{C} be the collection of picked sets.
- Consider an arbitrary element $e \in U$.
- Since e is in at most f sets, one of them must be picked to the extent of at least 1/f in the fractional cover.
- So C is a feasible set cover.
- The rounding process increases x_S , for each $S \in \mathcal{C}$, by a factor of at most f.

A tight example:

• Consider a hypergraph: vertices correspond to sets, and hyperedges correspond to elements.

- Let $V = V_1 \dot{\cup} \dots \dot{\cup} V_k$, where each V_i has cardinality k.
- There are n^k hyperedges: each picks one element from each V_i .
- Each set (i.e., vertex) has cost 1.
- Picking each set to the extent of 1/k gives an optimal fractional cover of cost n.
- Given this fractional solution, the rounding algorithm will pick all nk sets.
- On the other hand, picking all sets (vertices) in V_1 gives a set cover of cost n.

"The primal-dual method:"

- Start with a primal infeasible and a dual feasible solution (usually x = 0 and y = 0).
- Iteratively improve the feasibility of the primal solution and the optimality of the dual solution.
- The primal solution is always extended integrally.
- The current primal solution is used to determine the improvement to the dual, and vice versa.
- The cost of the dual solution is used as a lower bound.

(Relaxed) complementary slackness:

• Primal condition:

$$-x_S \neq 0 \Longrightarrow \sum_{e \in S} y_e = c(S).$$

• Dual condition:

$$- y_e \neq 0 \Longrightarrow \sum_{S \ni e} x_S \le f.$$

- Trivially satisfied!

A factor f approximation algorithm:

1.
$$x := 0, y := 0.$$

2. REPEAT

3. Pick an uncovered element e and raise y_e until some set becomes tight.

- 4. Include all tight sets in the cover and update x.
- 5. UNTIL all elements are covered

6. RETURN x.

Proof:

$$\sum_{S \in \mathcal{C}} c(S) x_S = \sum_{S \in \mathcal{C}} \left(\sum_{e \in S} y_e \right) x_S \le \sum_{e \in U} y_e \sum_{S \ni e} x_S \le f \cdot \sum_{e \in U} y_e \le f \cdot \text{OPT}$$

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.