Approximation Algorithms III

Maximum Satisfiability

Input: Set \mathcal{C} of clauses over n Boolean variables, nonnegative weights w_{c} for each clause $c \in \mathcal{C}$.
Output: A truth assignment to the Boolean variables that maximizes the weight of satisfied clauses.

- Special case: MAX- k SAT (each clause is of size at most k).
- Even MAX-2SAT is NP-hard.

A first algorithm:

1. Set each Boolean variable to be True independently with probability $1 / 2$.
2. Output the resulting truth assignment.

Lemma 1. Let W_{c} be a random variable that denotes the weight contributed by clause c. If c contains k literals, then $\mathrm{E}\left[W_{c}\right]=\left(1-2^{-k}\right) w_{c}$.

Proof:

- Clause c is not satisfied iff all literals are set to False.
- The probability of this event is 2^{-k}.
- $\mathrm{E}\left[W_{c}\right]=w_{c} \cdot \operatorname{Pr}[c$ is satisfied $]$.

Theorem 2. The first algorithm has an expected performance guarantee of $1 / 2$.

Proof:

- By linearity of expectation,

$$
\mathrm{E}[W]=\sum_{c \in \mathcal{C}} \mathrm{E}\left[W_{c}\right] \geq \frac{1}{2} \sum_{c \in \mathcal{C}} w_{c} \geq \frac{1}{2} \mathrm{OPT} .
$$

Derandomizing via the method of conditional expectations:

- Note that $\mathrm{E}[W]=\frac{1}{2} \cdot \mathrm{E}\left[W \mid x_{1}=\mathrm{T}\right]+\frac{1}{2} \cdot \mathrm{E}\left[W \mid x_{1}=\mathrm{F}\right]$.
- Also, we can compute $\mathrm{E}\left[W \mid x_{1}=\{\mathrm{T}, \mathrm{F}\}\right]$ in polynomial time.
- We choose the truth assignment with the larger conditional expectation, and continue in this fashion:
- $\mathrm{E}\left[W \mid x_{1}=a_{1}, \ldots, x_{i}=a_{i}\right]=\frac{1}{2} \cdot \mathrm{E}\left[W \mid x_{1}=a_{1}, \ldots, x_{i}=a_{i}, x_{i+1}=\mathrm{T}\right] \quad+\frac{1}{2} \cdot \mathrm{E}\left[W \mid x_{1}=\right.$ $\left.a_{1}, \ldots, x_{i}=a_{i}, x_{i+1}=\mathrm{F}\right]$.
- After n steps, we get a deterministic truth assignment of weight at least $\frac{1}{2} \cdot$ OPT.

An integer programming formulation:

$$
\begin{array}{rr}
\max & \\
\text { s.t. } w_{c \in \mathcal{C}} y_{c} & \\
\sum_{i \in c^{+}} x_{i}+\sum_{i \in c^{-}}\left(1-x_{i}\right) \geq y_{c} & c \in \mathcal{C} \\
y_{c} \in\{0,1\} & c \in \mathcal{C} \\
x_{i} \in\{0,1\} & i=1, \ldots, n
\end{array}
$$

And its linear programming relaxation:

$$
\begin{array}{rr}
\max & \\
\text { s.t. } \sum_{c \in \mathcal{C}} w_{c} y_{c} & \\
\sum_{i \in c^{+}} x_{i}+\sum_{i \in c^{-}}\left(1-x_{i}\right) \geq y_{c} & c \in \mathcal{C} \\
0 \leq y_{c} \leq 1 & c \in \mathcal{C} \\
0 \leq x_{i} \leq 1 & i=1, \ldots, n
\end{array}
$$

Randomized rounding:

1. Solve the LP relaxation. Let $\left(x^{*}, y^{*}\right)$ denote the optimal solution.
2. $\mathrm{FOR} i=1 \mathrm{TO} n$
3. Independently set variable i to True with probability x_{i}^{*}.
4. Output the resulting truth assignment.

Lemma 3. If c contains k literals, then

$$
\mathrm{E}\left[W_{c}\right] \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) w_{c} y_{c}^{*}
$$

Proof:

- We may assume that $c=\left(x_{1} \vee \ldots \vee x_{k}\right)$.
- The probability that not all $x_{1}, \ldots x_{k}$ are set to FALSE is

$$
\begin{align*}
1-\prod_{i=1}^{k}\left(1-x_{i}^{*}\right) & \geq 1-\left(\frac{\sum_{i=1}^{k}\left(1-x_{i}^{*}\right)}{k}\right)^{k} \tag{1}\\
& =1-\left(1-\frac{\sum_{i=1}^{k} x_{i}^{*}}{k}\right)^{k} \tag{2}\\
& \geq 1-\left(1-\frac{y_{c}^{*}}{k}\right)^{k} \tag{3}
\end{align*}
$$

where (1) follows from the arithmetic-geometric mean inequality and (3) follows from the LP constraint.

Proof:

- The function $g(y):=1-\left(1-\frac{y}{k}\right)^{k}$ is concave.
- In addition, $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{k}\right)^{k}$.
- Therefore, for $y \in[0,1], g(y) \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) y$.
- Hence, $\operatorname{Pr}[c$ is satisfied $] \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) y_{c}^{*}$.

Thus,

- Randomized rounding is a $\left(1-\left(1-\frac{1}{k}\right)^{k}\right)$-approximation algorithm for MAX- k SAT.
- Randomized rounding is a $\left(1-\frac{1}{e}\right)$-approximation algorithm for MAX-SAT.

k	Simple algorithm	Randomized rounding
1	0.5	1.0
2	0.75	0.75
3	0.875	0.704
4	0.938	0.684
5	0.969	0.672

Theorem 4. Given any instance of MAX-SAT, we run both algorithms and choose the better solution. The (expected) performance guarantee of the solution returned is $3 / 4$.

Proof:

- It suffices to show that $\frac{1}{2}\left(\mathrm{E}\left[W_{c}^{1}\right]+\mathrm{E}\left[W_{c}^{2}\right]\right) \geq \frac{3}{4} w_{c} y_{c}^{*}$.
- Assume that c has k clauses.
- By the first lemma, $\mathrm{E}\left[W_{c}^{1}\right] \geq\left(1-2^{-k}\right) w_{c} y_{c}^{*}$.
- By the second lemma, $\mathrm{E}\left[W_{c}^{2}\right] \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) w_{c} y_{c}^{*}$.
- Hence, $\frac{1}{2}\left(\mathrm{E}\left[W_{c}^{1}\right]+\mathrm{E}\left[W_{c}^{2}\right]\right) \geq \frac{3}{4} w_{c} y_{c}^{*}$.
- Note that this argument also shows that the integrality gap is not worse than 3/4.
- The following example shows that this is tight:
- Consider $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$.
- $x_{i}=1 / 2$ and $y_{c}=1$ for all i and c is an optimal LP solution.
- On the other hand, $\mathrm{OPT}=3$.

Bin Packing

Input: n items of size $a_{1}, \ldots, a_{n} \in(0,1]$.
Output: A packing of items into unit-sized bins that minimizes the number of bins used.
Theorem 5. The Bin-Packing Problem is NP-complete.

Proof:

- Reduction from Partition:

Input: n numbers $b_{1}, \ldots, b_{n} \geq 0$.
?: Does there exist $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} b_{i}=\sum_{i \notin S} b_{i}$?

- Define $a_{i}:=\frac{2 b_{i}}{\sum_{j=1}^{n} b_{j}}$, for $i=1, \ldots, n$.
- Obviously, there exists a partition iff one can pack all items into two bins.

Corollary 6. There is no α-approximation algorithm for Bin Packing with $\alpha<3 / 2$, unless $P=N P$.

First Fit:

- "Put the next item into the first bin where it fits. If it does not fit in any bin, open a new bin."
- This is an obvious 2-approximation algorithm:
- If m bins are used, then at least $m-1$ bins are more than half full. Therefore,

$$
\sum_{i=1}^{n} a_{i}>\frac{m-1}{2} .
$$

Since $\sum_{i=1}^{n} a_{i}$ is a lower bound, $m-1<2 \cdot$ OPT. The result follows.
Theorem 7. For any $0<\epsilon<1 / 2$, there is an algorithm that runs in time polynomial in n and finds a packing using at most $(1+2 \epsilon) \mathrm{OPT}+1$ bins.

Step 1:
Lemma 8. Let $\epsilon>0$ and $K \in \mathbb{Z}_{+}$be fixed. The bin-packing problem with items of size at least ϵ and with at most K different item sizes can be solved in polynomial time.

Proof:

- Let the different item sizes be s_{1}, \ldots, s_{l}, for some $l \leq K$.
- Let b_{i} be the number of items of size s_{i}.
- Let T_{1}, \ldots, T_{N} be all ways in which a single bin can be packed:

$$
\left\{T_{1}, \ldots, T_{N}\right\}=\left\{\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{Z}_{+}^{m}: \sum_{i=1}^{m} k_{i} s_{i} \leq 1\right\} .
$$

- We write $T_{j}=\left(t_{j 1}, \ldots, t_{j m}\right)$.
- Then bin packing is equivalent to the following IP:

$$
\begin{array}{lll}
\min & \sum_{j=1}^{N} x_{j} & \\
\text { s.t. } & \sum_{j=1}^{N} t_{j i} x_{j} \geq b_{i} & i=1, \ldots, m \\
& x_{j} \in \mathbb{Z}_{+} & j=1, \ldots, n
\end{array}
$$

- Since N is constant (each bin fits at most $1 / \epsilon$ many items, and there are only K different item sizes), this is an IP in fixed dimension, which can be solved in polynomial time.

Step 2:
Lemma 9. Let $\epsilon>0$ be fixed. The bin-packing problem with items of size at least ϵ has a $(1+\epsilon)$ approximation algorithm

Proof:

- Let I be the given instance. Sort the n items by nondecreasing size.
- Partition them into $K:=\left\lceil 1 / \epsilon^{2}\right\rceil$ groups each having at most $Q:=\left\lfloor n \epsilon^{2}\right\rfloor$ items.
- Construct a new instance, J, by rounding up the size of each item to the size of the largest item in its group.
- Note that J has at most K different item sizes.
- By the previous lemma, we can find an optimal packing for J in polynomial time.
- Clearly, this packing is also feasible for the original item sizes.
- We construct another instance, J^{\prime}, by rounding down the size of each item to the size of the smallest item in its group.
- Clearly, $\operatorname{OPT}\left(J^{\prime}\right) \leq \mathrm{OPT}(\mathrm{I})$.
- Observe that a feasible packing for J^{\prime} yields a feasible packing for all but the largest Q items of J.
- Therefore, $\operatorname{OPT}(J) \leq \mathrm{OPT}\left(J^{\prime}\right)+Q \leq \mathrm{OPT}(I)+Q$.
- Since each item has size at least $\epsilon, \operatorname{OPT}(I) \geq n \epsilon$.
- Thus, $Q=\left\lfloor n \epsilon^{2}\right\rfloor \leq \epsilon \operatorname{OPT}(I)$.

Step 3: Proof of the Theorem

- Let I^{\prime} be the instance obtained by ignoring items of size $<\epsilon$.
- By the previous lemma, we can find a packing for I^{\prime} using at most $(1+\epsilon)$ OPT bins.
- We then pack the items of size $\leq \epsilon$ in a First-Fit manner into the bins opened for I^{\prime}.
- If no additional bins are need, we are done.
- Otherwise, let M be the total number of bins used.
- Note that all but the last bin must be full to the extent of at least $1-\epsilon$.
- Therefore, the sum of item sizes in I is at least $(M-1)(1-\epsilon)$.
- Since this is a lower bound on $\operatorname{OPT}(I)$, we get

$$
M \leq \frac{\operatorname{OPT}(I)}{1-\epsilon}+1 \leq(1+2 \epsilon) \mathrm{OPT}(I)+1
$$

Performance Guarantees

- The absolute performance ratio for an approximation algorithm A for a minimization problem Π is given by

$$
R_{A}:=\inf \left\{r \geq 1: \frac{A(I)}{\mathrm{OPT}(I)} \leq r \text { for all instances } I \in \Pi\right\}
$$

- The asymptotic performance ratio for an approximation algorithm A for a minimization problem Π is given by

$$
\begin{array}{r}
R_{A}^{\infty}:=\inf \left\{r \geq 1: \text { for some } N \in \mathbb{Z}_{+}, \frac{A(I)}{\mathrm{OPT}(I)} \leq r\right. \\
\quad \text { for all } I \in \Pi \text { with } \mathrm{OPT}(I) \geq N\}
\end{array}
$$

- The last theorem gives an APTAS (i.e., an asymptotic polynomial-time approximation scheme) for Bin Packing.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

