Mixed-Integer Programming II

Mixed Integer Inequalities

- Consider $S=\left\{(x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{p}: \sum_{j=1}^{n} a_{j} x_{j}+\sum_{j=1}^{p} g_{j} y_{j}=b\right\}$.
- Let $b=\lfloor b\rfloor+f_{0}$ where $0<f_{0}<1$.
- Let $a_{j}=\left\lfloor a_{j}\right\rfloor+f_{j}$ where $0 \leq f_{j}<1$.
- Then $\sum_{f_{j} \leq f_{0}} f_{j} x_{j}+\sum_{f_{j}>f_{0}}\left(f_{j}-1\right) x_{j}+\sum_{j=1}^{p} g_{j} y_{j}=k+f_{0}$, where k is some integer.
- Since $k \leq-1$ or $k \geq 0$, any $x \in S$ satisfies

$$
\begin{equation*}
\sum_{f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}-\sum_{f_{j}>f_{0}} \frac{1-f_{j}}{f_{0}} x_{j}+\sum_{j=1}^{p} \frac{g_{j}}{f_{0}} y_{j} \geq 1 \tag{1}
\end{equation*}
$$

OR

$$
\begin{equation*}
-\sum_{f_{j} \leq f_{0}} \frac{f_{j}}{1-f_{0}} x_{j}+\sum_{f_{j}>f_{0}} \frac{1-f_{j}}{1-f_{0}} x_{j}-\sum_{j=1}^{p} \frac{g_{j}}{1-f_{0}} y_{j} \geq 1 . \tag{2}
\end{equation*}
$$

- This is of the form $\sum_{j} a_{j}^{1} x_{j} \geq 1$ or $\sum_{j} a_{j}^{2} x_{j} \geq 1$, which implies $\sum_{j} \max \left\{a_{j}^{1}, a_{j}^{2}\right\} x_{j} \geq 1$ for any $x \geq 0$.
- For each variable, what is the max coefficient in (1) and (2)?
- We get

$$
\sum_{f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}+\sum_{f_{j}>f_{0}} \frac{1-f_{j}}{1-f_{0}} x_{j}+\sum_{g_{j}>0} \frac{g_{j}}{f_{0}} y_{j}-\sum_{g_{j}<0} \frac{g_{j}}{1-f_{0}} y_{j} \geq 1 .
$$

- This is the Gomory mixed integer (GMI) inequality.
- In the pure integer programming case, the GMI inequality reduces to

$$
\sum_{f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}+\sum_{f_{j}>f_{0}} \frac{1-f_{j}}{1-f_{0}} x_{j} \geq 1
$$

- Since $\frac{1-f_{j}}{1-f_{0}}<\frac{f_{j}}{f_{0}}$ when $f_{j}>f_{0}$, the GMI inequality dominates

$$
\sum_{j=1}^{n} f_{j} x_{j} \geq f_{0}
$$

which is known as the fractional cut.

- Consider now $S=\left\{(x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{p}: A x+G y \leq b\right\}$.
- Let $P=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{p}: A x+G y \leq b\right\}$ be the underlying polyhedron.
- Let $\alpha x+\gamma y \leq \beta$ be any valid for P.
- Add a nonnegative slack variable s, use $\alpha x+\gamma y+s=\beta$ to derive a GMI inequality, and eliminate $s=\beta-\alpha x-\gamma y$ from it.
- The result is a valid inequality for S.
- These inequalities are called the GMI inequalities for S.
- We illustrate this on a small example:

$$
\begin{aligned}
& \begin{array}{lrr}
\text { max } & x & +2 y \\
\text { s.t. } & -x & +y
\end{array} \\
& x \quad+y \leq 5 \\
& 2 x \quad-y \leq 4 \\
& x \in \mathbb{Z}_{+} \quad y \in \mathbb{R}_{+}
\end{aligned}
$$

- Adding slack variables $s_{1}, s_{2}, s_{3} \geq 0$ leads to the system

$$
\begin{aligned}
& z-x-2 y \quad=0 \\
& -x+y+s_{1}=2 \\
& x+y \quad+s_{2}=5 \\
& 2 x-y \quad+s_{3}=4
\end{aligned}
$$

- The optimal tableau is

$$
\begin{aligned}
& z \quad+0.5 s_{1}+1.5 s_{2}=8.5 \\
& y+0.5 s_{1}+0.5 s_{2}=3.5 \\
& x \quad-0.5 s_{1}+0.5 s_{2} \quad=1.5 \\
& 0.5 s_{1}-0.5 s_{2}+s_{3}=4.5
\end{aligned}
$$

and the corresponding solutions is $\bar{x}=1.5$ and $\bar{y}=3.5$.

- Since \bar{x} is not integer, we generate a cut from that row:

$$
x-0.5 s_{1}+0.5 s_{2}=1.5
$$

- Here $f_{0}=0.5$ and we get $s_{1}+s_{2} \geq 1$.
- Since $s_{1}+s_{2}=7-2 y$, this corresponds to $y \leq 3$ in the (x, y)-space.
- In contrast to lift-and-project cuts, it is in general NP-hard to find a GMI inequality that cuts off a point $(\bar{x}, \bar{y}) \in P \backslash S$, or show that none exists.
- However, one can easily find a GMI inequality that cuts off a basic feasible solution.
- On 41 MIPLIB instances, adding the GMI cuts generated from the optimal simplex tableau reduces the integrality gap by 24% on average [Bonami et al. 2008]
- GMI cuts are widely used in commercial codes today.
- Numerical issues need to be addressed, however.

Split cuts

- Let $P=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p}: A x+G y \leq b\right\}$, and let $S=P \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{p}\right)$.
- For $\pi \in \mathbb{Z}^{n}$ and $\pi_{0} \in \mathbb{Z}$, define

$$
\begin{aligned}
& \Pi_{1}=P \cap\left\{(x, y): \pi x \leq \pi_{0}\right\} \\
& \Pi_{2}=P \cap\left\{(x, y): \pi x \geq \pi_{0}+1\right\}
\end{aligned}
$$

- Clearly, $S \subseteq \Pi_{1} \cup \Pi_{2}$.
- Therefore, $\operatorname{conv}(S) \subseteq \operatorname{conv}\left(\Pi_{1} \cup \Pi_{2}\right)$.
- We call the latter set $P^{\left(\pi, \pi_{0}\right)}$. It is a polyhedron.
- An inequality $c x+h y \leq c_{0}$ is a split inequality if it is valid for some $P^{\left(\pi, \pi_{0}\right)}$.
- A split is a disjunction $\pi x \leq \pi_{0}$ or $\pi x \geq \pi_{0}+1$ where $\pi \in \mathbb{Z}^{n}$ and $\pi_{0} \in \mathbb{Z}$.
- A split defined by $\left(\pi, \pi_{0}\right)$ is a one-side split for P if

$$
\begin{equation*}
\pi_{0} \leq z<\pi_{0}+1 \tag{3}
\end{equation*}
$$

where $z=\max \{\pi x:(x, y) \in P\}$.

- This is equivalent to $\Pi_{1} \subseteq P$ and $\Pi_{2}=\emptyset$.
- The inequality $\pi x \leq \pi_{0}$ is valid for S; in fact, it is a Gomory-Chvátal inequality.
- In particular, $\pi x \leq \pi_{0}$ satisfies (4) iff $\pi_{0}=\lfloor z\rfloor$.

Split cuts and Gomory-Chvátal cuts

- Let P^{1} be the split closure of P, and, for $k \geq 2$, let P^{k} denote the split closure relative to P^{k-1}.
- P^{1} is a polyhedron (and so is P^{k}).
- In contrast to the pure integer case and to the mixed $0 / 1$ case, there is in general no finite r such that $P^{r}=\operatorname{conv}(S)$.

Split cuts and other cuts

- Lift-and-project inequalities are split inequalities (where the disjunction is $x_{j} \leq 0$ or $x_{j} \geq 1$).
- Gomory's mixed-integer inequalities are split inequalities (where the disjunction is (1) or (2)).
- We argued that $k=\lfloor b\rfloor-\sum_{f_{j} \leq f_{0}}\left\lfloor a_{j}\right\rfloor x_{j}-\sum_{f_{j}>f_{0}}\left\lceil a_{j}\right\rceil x_{j}$ is an integer, and either $k \leq-1$ or $k \geq 0$.

Split cuts and GMI cuts

Lemma 1. Let $P=\{x: A x \leq b\}$ and let $\Pi=P \cap\left\{x: \pi x \leq \pi_{0}\right\}$. If $\Pi \neq \emptyset$ and $\alpha x \leq \beta$ is valid for Π, then there exists $\lambda \geq 0$ such that

$$
\alpha x-\lambda\left(\pi x-\pi_{0}\right) \leq \beta
$$

is valid for P.
Proof:

- By LP duality, there exist $u \geq 0$ and $\lambda \geq 0$ such that

$$
\alpha=u A+\lambda \pi \quad \text { and } \quad \beta \geq u b+\lambda \pi_{0} .
$$

- Since $u A x \leq u b$ is valid for P, so is $u A x \leq \beta-\lambda \pi_{0}$.
- As $u A x=\alpha x-\lambda \pi x$, the claim follows.

Theorem 2. Let $P=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{p}: A x+G y \leq b\right\}$ be a rational polyhedron and let $S=P \cap\left(\mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{p}\right)$. The split closure of P is identical to the Gomory mixed integer closure of P.

Proof:

- Let $c x+h y \leq c_{0}$ be a split inequality. Let $\left(\pi, \pi_{0}\right)$ be the corresponding split.
- We may assume that $\Pi_{1} \neq \emptyset$ and $\Pi_{2} \neq \emptyset$.
- By the previous lemma, there exist $\alpha, \beta \geq 0$ such that

$$
\begin{align*}
c x+h y-\alpha\left(\pi x-\pi_{0}\right) & \leq c_{0} \text { and } \tag{4}\\
c x+h y+\beta\left(\pi x-\left(\pi_{0}+1\right)\right) & \leq c_{0} \tag{5}
\end{align*}
$$

are both valid for P.

- We can assume that $\alpha>0$ and $\beta>0$; otherwise $c x+h y \leq c_{0}$ is already valid for P.
- We now apply the Gomory procedure to (4) and (5).
- Introduce slack variables s_{1} and s_{2} and subtract (4) from (5):

$$
(\alpha+\beta) \pi x+s_{2}-s_{1}=(\alpha+\beta) \pi_{0}+\beta
$$

- Dividing by $\alpha+\beta$ yields

$$
\pi x+\frac{s_{2}}{\alpha+\beta}-\frac{s_{1}}{\alpha+\beta}=\pi_{0}+\frac{\beta}{\alpha+\beta} .
$$

- Note that $f_{0}=\frac{\beta}{\alpha+\beta}$ and s_{2} has a positive coefficient, while s_{1} has a negative coefficient. We get

$$
\frac{\frac{1}{\alpha+\beta}}{\frac{\beta}{\alpha+\beta}} s_{2}+\frac{\frac{1}{\alpha+\beta}}{1-\frac{\beta}{\alpha+\beta}} s_{1} \geq 1 .
$$

- This simplifies to

$$
\frac{1}{\alpha} s_{1}+\frac{1}{\beta} s_{2} \geq 1 .
$$

- Now replace s_{1} and s_{2} as defined in (4) and (5) to get the GMI inequality in the (x, y)-space. The resulting inequality is

$$
c x+h y \leq c_{0} .
$$

Additional Literature

- W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver: Combinatorial Optimization
- M. Grötschel, L. Lovász, A. Schrijver: Geometric Algorithms and Combinatorial Optimization
- B. Korte, J. Vygen: Combinatorial Optimization - Theory and Algorithms
- E. Lawler: Combinatorial Optimization: Networks and Matroids
- E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization
- J. Lee: A First Course in Combinatorial Optimization
- G. Nemhauser, L.A. Wolsey: Integer and Combinatorial Optimization
- C.H. Papadimitriou, K. Steiglitz: Combinatorial Optimization - Algorithms and Complexity
- A. Schrijver: Combinatorial Optimization - Polyhedra and Efficiency
- A. Schrijver: Theory of Linear and Integer Programming
- ...

Final Exam

- Tuesday, December 15, 1:30-4:30PM, E51-376
- You can bring/use the textbook, the lecture notes, the homeworks, and homework solutions.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

