
R for Machine Learning

Allison Chang

1 Introduction

It is common for today’s scientific and business industries to collect large amounts of data, and the ability to
analyze the data and learn from it is critical to making informed decisions. Familiarity with software such as R
allows users to visualize data, run statistical tests, and apply machine learning algorithms. Even if you already
know other software, there are still good reasons to learn R:

1.	 R is free. If your future employer does not already have R installed, you can always download it for free,
unlike other proprietary software packages that require expensive licenses. No matter where you travel, you
can have access to R on your computer.

2.	 R gives you access to cutting-edge technology. Top researchers develop statistical learning methods
in R, and new algorithms are constantly added to the list of packages you can download.

3.	 R is a useful skill. Employers that value analytics recognize R as useful and important. If for no other
reason, learning R is worthwhile to help boost your résumé.

Note that R is a programming language, and there is no intuitive graphical user interface with buttons you can
click to run different methods. However, with some practice, this kind of environment makes it easy to quickly
code scripts and functions for various statistical purposes. To get the most out of this tutorial, follow the examples
by typing them out in R on your own computer. A line that begins with > is input at the command prompt. We
do not include the output in most cases, but you should try out the commands yourself and see what happens.
If you type something at the command line and decide not to execute, press the down arrow to clear the line;
pressing the up arrow gives you the previous executed command.

1.1 Getting Started

The R Project website is http://www.r-project.org/. In the menu on the left, click on CRAN under “Download,
Packages.” Choose a location close to you. At MIT, you can go with University of Toronto under Canada. This
leads you to instructions on how to download R for Linux, Mac, or Windows.

Once you open R, to figure out your current directory, type getwd(). To change directory, use setwd (note
that the “C:” notation is for Windows and would be different on a Mac):

>	 setwd("C:\\Datasets")

1.2 Installing and loading packages

Functions in R are grouped into packages, a number of which are automatically loaded when you start R. These
include “base,” “utils,” “graphics,” and “stats.” Many of the most essential and frequently used functions come
in these packages. However, you may need to download additional packages to obtain other useful functions. For
example, an important classification method called Support Vector Machines is contained in a package called

1

http://www.r-project.org/

“e1071.” To install this package, click “Packages” in the top menu, then “Install package(s)...” When asked to
select a CRAN mirror, choose a location close to you, such as “Canada (ON).” Finally select “e1071.” To load
the package, type library(e1071) at the command prompt. Note that you need to install a package only
once, but that if you want to use it, you need to load it each time you start R.

1.3 Running code

You could use R by simply typing everything at the command prompt, but this does not easily allow you to save,
repeat, or share your code. Instead, go to “File” in the top menu and click on “New script.” This opens up a new
window that you can save as a .R file. To execute the code you type into this window, highlight the lines you
wish to run, and press Ctrl-R on a PC or Command-Enter on a Mac. If you want to run an entire script, make
sure the script window is on top of all others, go to “Edit,” and click “Run all.” Any lines that are run appear in
red at the command prompt.

1.4 Help in R

The functions in R are generally well-documented. To find documentation for a particular function, type ?
followed directly by the function name at the command prompt. For example, if you need help on the “sum”
function, type ?sum. The help window that pops up typically contains details on both the input and output for
the function of interest. If you are getting errors or unexpected output, it is likely that your input is
insufficient or invalid, so use the documentation to figure out the proper way to call the function.

If you want to run a certain algorithm but do not know the name of the function in R, doing a Google search
of R plus the algorithm name usually brings up information on which function to use.

2 Datasets

When you test any machine learning algorithm, you should use a variety of datasets. R conveniently comes with
its own datasets, and you can view a list of their names by typing data() at the command prompt. For instance,
you may see a dataset called “cars.” Load the data by typing data(cars), and view the data by typing cars.

Another useful source of available data is the UCI Machine Learning Repository, which contains a couple
hundred datasets, mostly from a variety of real applications in science and business. The repository is located at
http://archive.ics.uci.edu/ml/datasets.html. These data are often used by machine learning researchers
to develop and compare algorithms. We have downloaded a number of datasets for your use, and you can find
the text files . These include:

Name Rows Cols Data

Iris 150 4 Real
Wine 178 13 Integer, Real
Haberman’s Survival 306 3 Integer
Housing 506 14 Categorical, Integer, Real
Blood Transfusion Service Center 748 4 Integer
Car Evaluation 1728 6 Categorical
Mushroom 8124 119 Binary
Pen-based Recognition of Handwritten Digits 10992 16 Integer

2

in the Datasets section

http://archive.ics.uci.edu/ml/datasets.html
http://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/datasets

You are encouraged to download your own datasets from the UCI site or other sources, and to use R to study the
data. Note that for all except the Housing and Mushroom datasets, there is an additional class attribute column
that is not included in the column counts. Also note that if you download the Mushroom dataset from the UCI
site, it has 22 categorical features; in our version, these have been transformed into 119 binary features.

3 Basic Functions

In this section, we cover how to create data tables, and analyze and plot data. We demonstrate by example how
to use various functions. To see the value(s) of any variable, vector, or matrix at any time, simply enter its name
in the command line; you are encouraged to do this often until you feel comfortable with how each data structure
is being stored. To see all the objects in your workspace, type ls(). Also note that the arrow operator <- sets
the left-hand side equal to the right-hand side, and that a comment begins with #.

3.1 Creating data

To create a variable x and set it equal to 1, type x <- 1. Now suppose we want to generate the vector [1, 2, 3, 4, 5],
and call the vector v. There are a couple different ways to accomplish this:

> v <- 1:5
> v <- c(1,2,3,4,5) # c can be used to concatenate multiple vectors
> v <- seq(from=1,to=5,by=1)

These can be row vectors or column vectors. To generate a vector v0 of six zeros, use either of the following.
Clearly the second choice is better if you are generating a long vector.

> v0 <- c(0,0,0,0,0,0)
> v0 <- seq(from=0,to=0,length.out=6)

We can combine vectors into matrices using cbind and rbind. For instance, if v1, v2, v3, and v4 are vectors of
the same length, we can combine them into matrices, using them either as columns or as rows:

> v1 <- c(1,2,3,4,5)
> v2 <- c(6,7,8,9,10)
> v3 <- c(11,12,13,14,15)
> v4 <- c(16,17,18,19,20)
> cbind(v1,v2,v3,v4)
> rbind(v1,v2,v3,v4)

Another way to create the second matrix is to use the matrix function to reshape a vector into a matrix of the
right dimensions.

> v <- seq(from=1,to=20,by=1)
> matrix(v, nrow=4, ncol=5)

Notice that this is not exactly right—we need to specify that we want to fill in the matrix by row.

> matrix(v, nrow=4, ncol=5, byrow=TRUE)

It is often helpful to name the columns and rows of a matrix using colnames and rownames. In the following,
first we save the matrix as matrix20, and then we name the columns and rows.

3

> matrix20 <- matrix(v, nrow=4, ncol=5, byrow=TRUE)
> colnames(matrix20) <- c("Col1","Col2","Col3","Col4","Col5")
> rownames(matrix20) <- c("Row1","Row2","Row3","Row4")

You can type colnames(matrix20)/rownames(matrix20) at any point to see the column/row names for matrix20.
To access a particular element in a vector or matrix, index it by number or by name with square braces:

> v[3] # third element of v
> matrix20[,"Col2"] # second column of matrix20
> matrix20["Row4",] # fourth row of matrix20
> matrix20["Row3","Col1"] # element in third row and first column of matrix20
> matrix20[3,1] # element in third row and first column of matrix20

You can find the length of a vector or number of rows or columns in a matrix using length, nrow, and ncol.

> length(v1)
> nrow(matrix20)
> ncol(matrix20)

Since you will be working with external datasets, you will need functions to read in data tables from text files.
For instance, suppose you wanted to read in the Haberman’s Survival dataset (from the UCI Repository). Use
the read.table function:

dataset <- read.table("C:\\Datasets\\haberman.csv", header=FALSE, sep=",")

The first argument is the location (full path) of the file. If the first row of data contains column names, then the
second argument should be header = TRUE, and otherwise it is header = FALSE. The third argument contains
the delimiter. If the data are separated by spaces or tabs, then the argument is sep = " " and sep = "\t"
respectively. The default delimiter (if you do not include this argument at all) is “white space” (one or more
spaces, tabs, etc.). Alternatively, you can use setwd to change directory and use only the file name in the
read.table function. If the delimiter is a comma, you can also use read.csv and leave off the sep argument:

dataset <- read.csv("C:\\Datasets\\haberman.csv", header=FALSE)

Use write.table to write a table to a file. Type ?write.table to see details about this function. If you need to
write text to a file, use the cat function.

A note about matrices versus data frames: A data frame is similar to a matrix, except it can also include
non-numeric attributes. For example, there may be a column of characters. Some functions require the data
passed in to be in the form of a data frame, which would be stated in the documentation. You can always coerce
a matrix into a data frame using as.data.frame. See Section 3.6 for an example.

A note about factors: A factor is essentially a vector of categorical variables, encoded using integers. For
instance, if each example in our dataset has a binary class attribute, say 0 or 1, then that attribute can be
represented as a factor. Certain functions require one of their arguments to be a factor. Use as.factor to encode
a vector as a factor. See Sections 4.5 and 4.9 for examples.

3.2 Sampling from probability distributions

There are a number of functions for sampling from probability distributions. For example, the following commands
generate random vectors of the user-specified length n from distributions (normal, exponential, poisson, uniform,
binomial) with user-specified parameters. There are other distributions as well.

4

> norm_vec <- rnorm(n=10, mean=5, sd=2)

> exp_vec <- rexp(n=100, rate=3)

> pois_vec <- rpois(n=50, lambda=6)

> unif_vec <- runif(n=20, min=1, max=9)

> bin_vec <- rbinom(n=20, size=1000, prob=0.7)

Suppose you have a vector v of numbers. To randomly sample, say, 25 of the numbers, use the sample function:

> sample(v, size=25, replace=FALSE)

If you want to sample with replacement, set the replace argument to TRUE.
If you want to generate the same random vector each time you call one of the random functions listed above,

pick a “seed” for the random number generator using set.seed, for example set.seed(100).

3.3 Analyzing data

To compute the mean, variance, standard deviation, minimum, maximum, and sum of a set of numbers, use mean,
var, sd, min, max, and sum. There are also rowSum and colSum to find the row and column sums for a matrix.
To find the component-wise absolute value and square root of a set of numbers, use abs and sqrt. Correlation
and covariance for two vectors are computed with cor and cov respectively.

Like other programming languages, you can write if statements, and for and while loops. For instance, here
is a simple loop that prints out even numbers between 1 and 10 (%% is the modulo operation):

> for (i in 1:10){
+ if (i %% 2 == 0){
+ cat(paste(i, "is even.\n", sep=" ")) # use paste to concatenate strings
+ }
+ }

The 1:10 part of the for loop can be specified as a vector. For instance, if you wanted to loop over indices 1, 2,
3, 5, 6, and 7, you could type for (i in c(1:3,5:7)).

To pick out the indices of elements in a vector that satisfy a certain property, use which, for example:

> which(v >= 0) # indices of nonnegative elements of v
> v[which(v >= 0)] # nonnegative elements of v

3.4 Plotting data

We use the Haberman’s Survival data (read into data frame dataset) to demonstrate plotting functions. Each
row of data represents a patient who had surgery for breast cancer. The three features are: the age of the patient
at the time of surgery, the year of the surgery, and the number of positive axillary nodes detected. Here we plot:

1. Scatterplot of the first and third features,

2. Histogram of the second feature,

3. Boxplot of the first feature.

To put all three plots in a 1 × 3 matrix, use par(mfrow=c(1,3)). To put each plot in its own window, use
win.graph() to create new windows.

> plot(dataset[,1], dataset[,3], main="Scatterplot", xlab="Age", ylab="Number of Nodes", pch=20)

> hist(dataset[,2], main="Histogram", xlab="Year", ylab="Count")

> boxplot(dataset[,1], main="Boxplot", xlab="Age")

5

Scatterplot Histogram Boxplot

0
 1

0
 20

 30
 40

 50

N
um

be
r o

f N
od

es

C
ou

nt

0
 1

0
20

30
40

50
60

30

40

50

60

70

80

30 40 50 60 70 80 58 60 62 64 66 68

Age Year Age

Figure 1: Plotting examples.

The pch argument in the plot function can be varied to change the marker. Use points and lines to add extra
points and lines to an existing plot. You can save the plots in a number of different formats; make sure the plot
window is on top, and go to “File” then “Save as.”

3.5 Formulas

Certain functions have a “formula” as one of their arguments. Usually this is a way to express the form of a
model. Here is a simple example. Suppose you have a response variable y and independent variables x1, x2, and
x3. To express that y depends linearly on x1, x2, and x3, you would use the formula y ∼ x1 + x2 + x3, where
y, x1, x2, and x3 are also column names in your data matrix. See Section 3.6 for an example. Type ?formula
for details on how to capture nonlinear models.

3.6 Linear regression

One of the most common modeling approaches in statistical learning is linear regression. In R, use the lm function
to generate these models. The general form of a linear regression model is

Y = β0 + β1X1 + β2X2 + · · ·+ βkXk + ε,

where ε is normally distributed with mean 0 and some variance σ2 .
Let y be a vector of dependent variables, and x1 and x2 be vectors of independent variables. We want to find

the coefficients of the linear regression model Y = β0 + β1X1 + β2X2 + ε. The following commands generate the
linear regression model and give a summary of it.

> lm_model <- lm(y ∼ x1 + x2, data=as.data.frame(cbind(y,x1,x2)))
> summary(lm_model)

The vector of coefficients for the model is contained in lm model$coefficients.

4 Machine Learning Algorithms

We give the functions corresponding to the algorithms covered in class. Look over the documentation for
each function on your own as only the most basic details are given in this tutorial.

6

4.1 Prediction

For most of the following algorithms (as well as linear regression), we would in practice first generate the model
using training data, and then predict values for test data. To make predictions, we use the predict function. To
see documentation, go to the help page for the algorithm, and then scroll through the Contents menu on the left
side to find the corresponding predict function. Or simply type ?predict.name, where name is the function
corresponding to the algorithm. Typically, the first argument is the variable in which you saved the model, and
the second argument is a matrix or data frame of test data. Note that when you call the function, you can just
type predict instead of predict.name. For instance, if we were to predict for the linear regression model above,
and x1 test and x2 test are vectors containing test data, we can use the command

> predicted_values <- predict(lm_model, newdata=as.data.frame(cbind(x1_test, x2_test)))

4.2 Apriori

To run the Apriori algorithm, first install the arules package and load it. See Section 1.2 for installing and
loading new packages. Here is an example of how to run the Apriori algorithm using the Mushroom dataset.
Note that the dataset must be a binary incidence matrix; the column names should correspond to the “items”
that make up the “transactions.” The following commands print out a summary of the results and a list of the
generated rules.

> dataset <- read.csv("C:\\Datasets\\mushroom.csv", header = TRUE)

> mushroom_rules <- apriori(as.matrix(dataset), parameter = list(supp = 0.8, conf = 0.9))

> summary(mushroom_rules)

> inspect(mushroom_rules)

You can modify the parameter settings depending on your desired support and confidence thresholds.

4.3 Logistic Regression

You do not need to install an extra package for logistic regression. Using the same notation as in Section 3.6, the
command is:

> glm_mod <-glm(y ∼ x1+x2, family=binomial(link="logit"), data=as.data.frame(cbind(y,x1,x2)))

4.4 K-Means Clustering

You do not need an extra package. If X is the data matrix and m is the number of clusters, then the command is:

> kmeans_model <- kmeans(x=X, centers=m)

4.5 k-Nearest Neighbor Classification

Install and load the class package. Let X train and X test be matrices of the training and test data respectively,
and labels be a binary vector of class attributes for the training examples. For k equal to K, the command is:

> knn_model <- knn(train=X_train, test=X_test, cl=as.factor(labels), k=K)

Then knn model is a factor vector of class attributes for the test set.

7

4.6 Näıve Bayes

Install and load the e1071 package. Using the same notation as in Section 3.6, the command is:

> nB_model <- naiveBayes(y ∼ x1 + x2, data=as.data.frame(cbind(y,x1,x2)))

4.7 Decision Trees (CART)

CART is implemented in the rpart package. Again using the formula, the command is

> cart_model <- rpart(y ∼ x1 + x2, data=as.data.frame(cbind(y,x1,x2)), method="class")

You can use plot.rpart and text.rpart to plot the decision tree.

4.8 AdaBoost

There are a number of different boosting functions in R. We show here one implementation that uses decision
trees as base classifiers. Thus the rpart package should be loaded. Also, the boosting function ada is in the ada
package. Let X be the matrix of features, and labels be a vector of 0-1 class labels. The command is

> boost_model <- ada(x=X, y=labels)

4.9 Support Vector Machines (SVM)

The SVM algorithm is in the e1071 package. Let X be the matrix of features, and labels be a vector of 0-1 class
labels. Let the regularization parameter be C. Use the following commands to generate the SVM model and view
details:

> svm_model <- svm(x=X, y=as.factor(labels), kernel ="radial", cost=C)
> summary(svm_model)

There are a variety of parameters such as the kernel type and value of the C parameter, so check the documentation
on how to alter them.

8

MIT OpenCourseWare
http://ocw.mit.edu

15.097 Prediction: Machine Learning and Statistics
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

