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The Näıve Bayes algorithm comes from a generative model. There is an impor-
tant distinction between generative and discriminative models. In all cases, we
want to predict the label y, given x, that is, we want P (Y = y|X = x). Through-
out the paper, we’ll remember that the probability distribution for measure P is
over an unknown distribution over X × Y .

Näıve Bayes Generative Model Estimate P (X = x|Y = y) and P (Y = y)
and use Bayes rule to get P (Y = y|X = x)

Discriminative Model Directly estimate P (Y = y|X = x)

Most of the top 10 classification algorithms are discriminative (K-NN, CART,
C4.5, SVM, AdaBoost).

For Näıve Bayes, we make an assumption that if we know the class label y, then
we know the mechanism (the random process) of how x is generated.

Näıve Bayes is great for very high dimensional problems because it makes a very
strong assumption. Very high dimensional problems suffer from the curse of di-
mensionality – it’s difficult to understand what’s going on in a high dimensional
space without tons of data.

Example: Constructing a spam filter. Each example is an email, each dimension
“j” of vector x represents the presence of a word.
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This x represents an email containing the words “a” and “buy”, but not “aard-
vark” or “zyxt”. The size of the vocabulary could be ∼50,000 words, so we are
in a 50,000 dimensional space.

Näıve Bayes makes the assumption that the x(j)’s are conditionally independent
given y. Say y = 1 means spam email, word 2,087 is “buy”, and word 39,831 is
“price.” Näıve Bayes assumes that if y = 1 (it’s spam), then knowing x(2,087) = 1
(email contains “buy”) won’t effect your belief about x(39,381) (email contains
“price”).

Note: This does not mean x(2,087) and x(39,831) are independent, that is,

P (X(2,087) = x(2,087)) = P (X(2,087) = x(2,087)|X(39,831) = x(39,831)).

It only means they are conditionally independent given y. Using the definition
of conditional probability recursively,

P (X(1) = x(1), . . . , X(50,000) = x(50,000)|Y = y) =

P (X(1) = x(1)|Y = y)P (X(2) = x(2)|Y = y,X(1) = x(1))

P (X(3) = x(3)|Y = y,X(1) = x(1), X(2) = x(2))

. . . P (X(50,000) = x(50,000)|Y = y,X(1) = x(1), . . . , X(49,999) = x(49,999)).

The independence assumption gives:

P (X(1) = x(1), . . . , X(n) = x(n)|Y = y)

= P (X(1) = x(1)|Y = y)P (X(2) = x(2)|Y = y) . . . P (X(n) = x(n)|Y = y)
n

=
∏

P (X(j) = x(j)

j=1

|Y = y). (1)
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Bayes rule says

(1) (1) P (Y = y)P (X(1) = x(1), ..., X(n) = x(n) Y = y)
P (Y = y|X = x , ..., X(n) = x(n)) =

|
P (X(1) = x(1), ..., X(n) = x(n))

so plugging in (1), we have

nP (Y = y) P (X(j) = x(j)j=1 Y = y)
P (Y = y|X(1) = x(1), ..., X(n) = x(n)) =

∏
|

P (X(1) = x(1), ..., X(n) = x(n))

For a new test instance, called xtest, we want to choose the most probable value
of y, that is

(1) (n)
P (Y = ỹ)

∏
(1)

j P (X = xtest, ..., X
(n) = x

yNB ∈
test

arg max
|Y = ỹ)

(1) (n)ỹ P (X(1) = x , ..., X(n)
test = xtest)

n

= arg maxP (Y = ỹ)
∏

P (X(j) = x(j)|Y = ỹ).
ỹ

j=1

(j)
So now, we just need P (Y = ỹ) for each possible ỹ, and P (X(j) = xtest|Y = ỹ)
for each j and ỹ. Of course we can’t compute those. Let’s use the empirical
probability estimates:

1ˆ [y =ỹ]
P (Y = ỹ) =

∑
i i = fraction of data where the label is ỹ
m

1i [ (j)

ˆ

∑
(j)∑xi =x ,y =ỹ(j) (j) ]

P (X = x |Y = ỹ) =
test i

= Conf(Y = ỹ → X(j) (j)
test = xtest).

1i [yi=ỹ]

That’s the simplest version of Näıve Bayes:

n

ˆ ˆ (j)
y ∈ arg maxP (Y = ỹ)

∏
P (X(j)

NB = xtest
ỹ

j=1

|Y = ỹ).

There could potentially be a problem that most of the conditional probabilities
are 0 because the dimensionality of the data is very high compared to the amount

ˆ (j)
of data. This causes a problem because if even one P (X(j) = xtest|Y = ỹ) is zero
then the whole right side is zero. In other words, if no training examples from
class “spam” have the word “tomato,” we’d never classify a test example con-
taining the word “tomato” as spam!
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To avoid this, we (sort of) set the probabilities to a small positive value when
there are no data. In particular, we use a “Bayesian shrinkage estimate” of
P (X(j) (j)

= xtest|Y = ỹ) where we add some hallucinated examples. There are K

hallucinated examples spread evenly over the possible values of X(j). K is the
number of distinct values of X(j). The probabilities are pulled toward 1/K. So,
now we replace:

1i (j) (j) + 1
=) [ˆ x x ,y =ỹ

P (X(j) (j ]
= xtest|Y = ỹ) =

∑ ∑ i test i

1i [yi=ỹ] + K

P̂ (Y = ỹ) =

∑
1i [yi=ỹ] + 1

m + K

ˆThis is called Laplace smoothing. The smoothing for P (Y = ỹ) is probably un-
necessary and has little to no effect.

Näıve Bayes is not necessarily the best algorithm, but is a good first thing to
try, and performs surprisingly well given its simplicity!

There are extensions to continuous data and other variations too.
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