Naïve Bayes
 MIT 15.097 Course Notes Cynthia Rudin

Thanks to Şeyda Ertekin
Credit: Ng, Mitchell
The Naïve Bayes algorithm comes from a generative model. There is an important distinction between generative and discriminative models. In all cases, we want to predict the label y, given x, that is, we want $P(Y=y \mid X=x)$. Throughout the paper, we'll remember that the probability distribution for measure P is over an unknown distribution over $\mathcal{X} \times \mathcal{Y}$.

Naïve Bayes Generative Model	Estimate $P(X=x \mid Y=y)$ and $P(Y=y)$ and use Bayes rule to get $P(Y=y \mid X=x)$
Discriminative Model	Directly estimate $P(Y=y \mid X=x)$

Most of the top 10 classification algorithms are discriminative (K-NN, CART, C4.5, SVM, AdaBoost).

For Naïve Bayes, we make an assumption that if we know the class label y, then we know the mechanism (the random process) of how x is generated.

Naïve Bayes is great for very high dimensional problems because it makes a very strong assumption. Very high dimensional problems suffer from the curse of dimensionality - it's difficult to understand what's going on in a high dimensional space without tons of data.

Example: Constructing a spam filter. Each example is an email, each dimension " j " of vector x represents the presence of a word.

$$
\mathbf{x}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\text { aardvark } \\
\text { aardwolf } \\
\vdots \\
1 \\
\vdots \\
\vdots \\
0
\end{array}\right] \begin{gathered}
\text { buy } \\
\text { zyxt }
\end{gathered}
$$

This \mathbf{x} represents an email containing the words "a" and "buy", but not "aardvark" or "zyxt". The size of the vocabulary could be $\sim 50,000$ words, so we are in a 50,000 dimensional space.

Naïve Bayes makes the assumption that the $x^{(j)}$'s are conditionally independent given y. Say $y=1$ means spam email, word 2,087 is "buy", and word 39,831 is "price." Naïve Bayes assumes that if $y=1$ (it's spam), then knowing $x^{(2,087)}=1$ (email contains "buy") won't effect your belief about $x^{(39,381)}$ (email contains "price").

Note: This does not mean $x^{(2,087)}$ and $x^{(39,831)}$ are independent, that is,

$$
P\left(X^{(2,087)}=x^{(2,087)}\right)=P\left(X^{(2,087)}=x^{(2,087)} \mid X^{(39,831)}=x^{(39,831)}\right) .
$$

It only means they are conditionally independent given y. Using the definition of conditional probability recursively,

$$
\begin{aligned}
& P\left(X^{(1)}=x^{(1)}, \ldots, X^{(50,000)}=x^{(50,000)} \mid Y=y\right)= \\
& \quad P\left(X^{(1)}=x^{(1)} \mid Y=y\right) P\left(X^{(2)}=x^{(2)} \mid Y=y, X^{(1)}=x^{(1)}\right) \\
& \quad P\left(X^{(3)}=x^{(3)} \mid Y=y, X^{(1)}=x^{(1)}, X^{(2)}=x^{(2)}\right) \\
& \quad \ldots P\left(X^{(50,000)}=x^{(50,000)} \mid Y=y, X^{(1)}=x^{(1)}, \ldots, X^{(49,999)}=x^{(49,999)}\right) .
\end{aligned}
$$

The independence assumption gives:

$$
\begin{align*}
& P\left(X^{(1)}=x^{(1)}, \ldots, X^{(n)}=x^{(n)} \mid Y=y\right) \\
& =P\left(X^{(1)}=x^{(1)} \mid Y=y\right) P\left(X^{(2)}=x^{(2)} \mid Y=y\right) \ldots P\left(X^{(n)}=x^{(n)} \mid Y=y\right) \\
& =\prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} \mid Y=y\right) \tag{1}
\end{align*}
$$

Bayes rule says

$$
P\left(Y=y \mid X^{(1)}=x^{(1)}, \ldots, X^{(n)}=x^{(n)}\right)=\frac{P(Y=y) P\left(X^{(1)}=x^{(1)}, \ldots, X^{(n)}=x^{(n)} \mid Y=y\right)}{P\left(X^{(1)}=x^{(1)}, \ldots, X^{(n)}=x^{(n)}\right)}
$$

so plugging in (1), we have

$$
P\left(Y=y \mid X^{(1)}=x^{(1)}, \ldots, X^{(n)}=x^{(n)}\right)=\frac{P(Y=y) \prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} \mid Y=y\right)}{P\left(X^{(1)}=x^{(1)}, \ldots, X^{(n)}=x^{(n)}\right)}
$$

For a new test instance, called $\mathbf{x}_{\text {test }}$, we want to choose the most probable value of y, that is

$$
\begin{aligned}
y_{N B} & \in \arg \max _{\tilde{y}} \frac{P(Y=\tilde{y}) \prod_{j} P\left(X^{(1)}=x_{\text {test }}^{(1)}, \ldots, X^{(n)}=x_{\text {test }}^{(n)} \mid Y=\tilde{y}\right)}{P\left(X^{(1)}=x_{\text {test }}^{(1)}, \ldots, X^{(n)}=x_{\text {test }}^{(n)}\right)} \\
& =\arg \max _{\tilde{y}} P(Y=\tilde{y}) \prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} \mid Y=\tilde{y}\right) .
\end{aligned}
$$

So now, we just need $P(Y=\tilde{y})$ for each possible \tilde{y}, and $P\left(X^{(j)}=x_{\text {test }}^{(j)} \mid Y=\tilde{y}\right)$ for each j and \tilde{y}. Of course we can't compute those. Let's use the empirical probability estimates:

$$
\begin{gathered}
\hat{P}(Y=\tilde{y})=\frac{\sum_{i} \mathbb{1}_{\left[y_{i}=\tilde{y}\right]}}{m}=\text { fraction of data where the label is } \tilde{y} \\
\hat{P}\left(X^{(j)}=x_{\text {test }}^{(j)} \mid Y=\tilde{y}\right)=\frac{\sum_{i} \mathbb{1}_{\left[x_{i}^{(j)}=x_{\text {test } t}^{(j)}, y_{i}=\tilde{y}\right]}}{\sum_{i} \mathbb{1}_{\left[y_{i}=\tilde{y}\right]}}=\operatorname{Conf}\left(Y=\tilde{y} \rightarrow X^{(j)}=x_{\text {test }}^{(j)}\right) .
\end{gathered}
$$

That's the simplest version of Naïve Bayes:

$$
y_{N B} \in \arg \max _{\tilde{y}} \hat{P}(Y=\tilde{y}) \prod_{j=1}^{n} \hat{P}\left(X^{(j)}=x_{\mathrm{test}}^{(j)} \mid Y=\tilde{y}\right)
$$

There could potentially be a problem that most of the conditional probabilities are 0 because the dimensionality of the data is very high compared to the amount of data. This causes a problem because if even one $\hat{P}\left(X^{(j)}=x_{\text {test }}^{(j)} \mid Y=\tilde{y}\right)$ is zero then the whole right side is zero. In other words, if no training examples from class "spam" have the word "tomato," we'd never classify a test example containing the word "tomato" as spam!

To avoid this, we (sort of) set the probabilities to a small positive value when there are no data. In particular, we use a "Bayesian shrinkage estimate" of $P\left(X^{(j)}=x_{\text {test }}^{(j)} \mid Y=\tilde{y}\right)$ where we add some hallucinated examples. There are K hallucinated examples spread evenly over the possible values of $X^{(j)}$. K is the number of distinct values of $X^{(j)}$. The probabilities are pulled toward $1 / K$. So, now we replace:

$$
\begin{gathered}
\hat{P}\left(X^{(j)}=x_{\text {test }}^{(j)} \mid Y=\tilde{y}\right)=\frac{\sum_{i} \mathbb{1}_{\left[x_{i}^{(j)}=x_{\text {test }}^{(j)}, y_{i}=\tilde{y}\right]}+1}{\sum_{i} \mathbb{1}_{\left[y_{i}=\tilde{y}\right]}+K} \\
\hat{P}(Y=\tilde{y})=\frac{\sum_{i} \mathbb{1}_{\left[y_{i}=\tilde{y}\right]}+1}{m+K}
\end{gathered}
$$

This is called Laplace smoothing. The smoothing for $\hat{P}(Y=\tilde{y})$ is probably unnecessary and has little to no effect.

Naïve Bayes is not necessarily the best algorithm, but is a good first thing to try, and performs surprisingly well given its simplicity!

There are extensions to continuous data and other variations too.

> PPT Slides

MIT OpenCourseWare
http://ocw.mit.edu

15.097 Prediction: Machine Learning and Statistics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

