
Boosting

MIT 15.097 Course Notes
Cynthia Rudin

Credit: Freund, Schapire, Daubechies

Boosting started with a question of Michael Kearns, about whether a “weak
learning algorithm” can be made into a “strong learning algorithm.” Suppose a
learning algorithm is only guaranteed, with high probability, to be slightly more
accurate than random guessing. Is it possible, despite how weak this algorithm
is, to use it to create a classifier whose error rate is arbitrarily close to 0? (There
are some other constraints that made the problem harder, regarding how much
calculation is allowed.) The answer to this question was given by Rob Schapire,
with an algorithm that could do it, but wasn’t very practical. Rob and Yoav
Freund developed some more algorithms, e.g., Boost-by-Majority, and then de-
veloped AdaBoost.

Given:

1. examples S = {xi, yi}mi=1, where yi ∈ {−1, 1}

2. easy access to “weak” learning algorithm A, producing “weak classifiers”
h ∈ H, h : X → {−1, 1}.

3. ε > 0.

Goal: Produce a new classifier H : X → {−1, 1} with error ≤ ε. Note: H is not
required to be in H.

What we might do is ask the weak learning algorithm A to produce a collection
of weak classifiers and figure out how to combine them. But running A with the
same input multiple times won’t be useful, for instance, if A is deterministic, it
will always produce the same weak classifiers over and over again. So we need
to modify A’s input to give new information each time we ask for a weak clas-
sifier. AdaBoost does this by producing a discrete probability distribution over
the examples, using that as input to the weak learning algorithm and changing
it at each round.

1

Outline of a generic boosting algorithm:

for t = 1...T
construct dt, where dt is a discrete probability distribution

over indices {1...m}.
run A on dt, producing h(t) : X → {−1, 1}.
calculate

εt = errordt
(h(t)) = Pri dt

[h(t)(x∼ i) = yi]

1
=:

2
− γt,

where by the weak learning assumption, γt > γWLA. (Of course, A tries

to minimize the error through the choice of h(t).)

end

output H

How do we design the dt’s? How do we create H? Let’s see what AdaBoost does.
AdaBoost (Freund and Schapire 98) is one of the top 10 algorithms in data min-
ing, also boosted decision trees rated #1 in Caruana and Niculescu-Mizil’s 2006
empirical survey.

The idea is that at each round, we increase the weight on the examples that are
harder to classify - those are the ones that have been previously misclassified
at previous iterates. So the weights of an example go up and down, depending
on how easy the example was to classify. The easy examples can eventually get
tiny weights and the hard examples get all the weight. In our notation, dt,i is
the weight of the probability distribution on example i. dt is called the “weight
vector.”

1
d1,i = for all i

m

dt,i e−αt if yi = h(t)(xi) (smaller weights for easy examples)
dt+1,i =

Zt
×

{
eαt if yi = h(t)(xi) (larger weights for hard examples)

where Zt is a normalization constant for the discrete distribution

that ensures
∑

dt+1,i = 1
i

dt,i
= e−yiαth(t)(xi)

Zt

2

6

6

That’s how AdaBoost’s weights are defined. It’s an exponential weighting scheme,
where the easy examples are down-weighted and the hard examples are up-
weighted.

H is a linear combination of weak classifiers:

H(x) = sign

(∑T
αth(t)(x) .

t=1

)
It’s a weighted vote, where αt is the coefficient assigned to h(t). Here, αt is
directly related to how well the weak classifier h(t) performed on the weighted
training set:

1
(

1− εt
αt = ln

2 εt

)
. (1)

where

εt = Pi∼dt
[h(t)(xi) = yi] =

∑
dt,i1[h(t)(xi)=yi] (2)

i

AdaBoost stands for “Adaptive Boosting.” It doesn’t depend on the weak learn-
ing algorithm’s assumption, γWLA, it adapts to the weak learning algorithm.

Demo

Try to remember these things about the notation: dt are the weights on the
examples, and αt are the coefficients for the linear combination that is used to
make predictions. These in some sense are both weights, so it’s kind of easy to
get them confused.

Statistical View of AdaBoost

I’m going to give the “statistical view” of AdaBoost, which is that it’s a coordi-
nate descent algorithm. Coordinate descent is just like gradient descent, except
that you can’t move along the gradient, you have to choose just one coordinate
at a time to move along.

6 6

3

AdaBoost was designed by Freund and Schapire, but they weren’t the ones who
came up with the statistical view of boosting, it was 5 different groups simulta-
neously (Breiman, 1997; Friedman et al., 2000; Rätsch et al., 2001; Duffy and
Helmbold, 1999; Mason et al., 2000).

Start again with {(x , y m
i i)}i=1 and weak learning algorithm A that can produce

weak classifiers {hj}nj=1, hj : X → {−1, 1}. Here n can be very large or even
infinite. Or, hj could be very simple and produce the jth coordinate when xi is

(j)
a binary vector, so hj(xi) = xi .

Consider the misclassification error:

m
1

Miscl. error =
m

∑
1[yif(xi)≤0]

i=1

w

1
e

m

∑
−yif(xi).

i=1

Choose f to be some linear combination of weak classifiers,

f(x) =
∑n

λjhj(x).
j=1

We’re going to end up minimizing the exponential loss with respect to the λj’s.

hich is upper bounded by the exponential loss:

m

4

-1.5
-1.5

-1

-1

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5
5 x2-6 x y+5 y2-0.0259 = 0

y

x

Image by MIT OpenCourseWare.

The notation is going to get complicated from here on in, so try to remember
what is what!

Define an m× n matrix M so that Mij = yihj(xi).

So matrix M encodes all of the training examples and the whole weak learning
algorithm. In other words, M contains all the inputs to AdaBoost. The ijth

entry in the matrix is 1 whenever weak classifier j correctly classifies example i.
(Note: we might never write out the whole matrix M in practice!)

Then
yif(xi) =

∑
λjyihj(xi) =

∑
λjMij = (Mλ)i.

j j

Then the exponential loss is:

Rtrain 1 1
(λ) =

∑
e−yif(xi) =

∑
e−(Mλ)i. (3)

m m
i i

Let’s do coordinate descent on the exp-loss Rtrain(λ). At each iteration we’ll
choose a coordinate of λ, called jt, and move αt in the jtht direction. So each
weak classifier corresponds to a direction in the space, and αt corresponds to
a distance along that direction. To do coordinate descent, we need to find the
direction j in which the directional derivative is the steepest. Let ej be a vector
that is 1 in the jth entry and 0 elsewhere. Choose direction:

5

e
j

[
∂Rtrain(λ α

t ∈ argmaxj −
t + j)

∂α

∣∣
∂ 1

∣
α=0

]
m

= argmax

∣[
λ

j

[
−
∂α m

∑
e−(M(

∣
t+αej))i

i=1

] ∣∣
[α=0

]
∂

= argmax −

[
1 ∑m

e−(Mλt) α

∣
i

∣
j

− (Mej)i

∂α m

∣
i=1

] ∣∣
∑m

=

[α=0

]
∂ 1

argmax −

[
e−(Mλt)

∣
i

∂α m

∣∣
j

−αMij

i=1

] ∣∣
α=0

]

= argmax

[
m

1 ∑
M e−(Mλ)

∣
t i

∣
j ij .
m

∣
i=1

]
Create a discrete probability distribution (we’ll see later it’s the same as Ad-
aBoost’s):

m

dt,i = e−(Mλt)i/Zt where Z (
t =

∑
e− Mλt)i (4)

i=1

Multiplying by Zt doesn’t affect the argmax. Same with 1 . So from above wem

have:
m

jt ∈ argmaxj
∑

Mijdt,i = argmax(dTt M)j.
i=1

So that’s how we choose weak classifier jt. How far should we go along direction
jt? Do a linesearch, set derivative to 0.

∂Rtrain(λt + αej
0 = t

)

∂α

∣∣∣∣∣
αt

m
1

= −
∑

M e−(Mλt)i αtMij
ij

− t

m t

i=1

1
= −

∑
e−(Mλt)ie−αt

1

m
i:Mij =1

−
m

i:Mt

∑
ij =t −1

−e−(Mλt)ieαt.

6

Get rid of the −1/m and multiply by 1/Zt:

0 =
∑

d e−αt α
t,i

i:Mij =1

− dt,ie t

i:Mij =t t −1

=: d e−αt
+ − d eα

∑
− t

d eα− t = d+e
−αt

d+
e2αt =

d−
1 d+ 1 1

αt = ln = ln
− d−

.
2 d 2 d− −

So the coordinate descent algorithm is:

d1,i = 1/m for i = 1...m
λ1 = 0
loop t = 1...T
jt ∈ argmax
d =−

αt = 1
2

∑ T
j(dt M)j

Mij =t −1
dt,i

ln
(
1−d−
d−

λt+1 = λt + αte

)
jt

d = e−(Mλt+1)i/
∑mZ for each i, where Z = e−(Mλt+1)i

t+1,i t+1 t+1 i=1

end

So that algorithm iteratively minimizes the exp-loss. But how is it AdaBoost?
Start with f(x). From coordinate descent, we notice that λt,j is just the sum of
the αt’s where our chosen direction jt is j.

T

λt,j = αt1[jt=j]

t=1

In other words, it’s the total amount

∑
we’ve traveled along direction j. Thus

n

f(x) =
∑ n T T n T

λt,jhj(x) =
∑∑

αt1[jt=j]hj(x) =
∑

αt
∑

hj(x)1[jt=j] =
∑

αthjt(x).
j=1 j=1 t=1 t=1 j=1 t=1

Look familiar? There is a slight difference in notation between this and Ad-
aBoost, but that’s it. (You can just set AdaBoost’s h(t) to coord descent’s hjt.)

7

Let’s look at dt. AdaBoost has:

d e−Mij
t,ie
−Mij αt αt

∏ ∏ tt
t e− tMij αtt 1

d j
t+1,i = = =

Zt m t Zt m

∑∏ =
t Zt m

∏ e− Mijλt,j

Zt

∑

This means the denominator must be i e
−
∑

j Mijλtj because we know the dt+1

vector is normalized. So the dt’s for AdaBoost are the same as for coordinate
descent (4) as long as jt’s and αt’s are

∑
the same.

Let’s make sure AdaBoost chooses the same directions jt as the coordinate de-
scent algorithm. AdaBoost’s weak learning algorithm hopefully chooses the weak
classifier that has the lowest error. This combined with the definition for the error
(2) means:

jt ∈ argminj
∑

dt,i1[hj(xi)=yi] = argminj
i i:M

∑
dt,i

ij=−1

= argmaxj

−
i:M

∑
dt,i

ij=−1

 = argmaxj 1− 2
i:M

∑
dt,i

ij=−1

= argmaxj

 ∑ dt,i + d
i:Mij=1 i:M

∑
t,i

ij=−1

= argmaxj dt,i dt,i =

− 2
i:M

∑
dt,i∑ ij=−1

−
∑

argmax T
j(dt M)j.

i:Mij=1 i:Mij=−1

Does that also look familiar? So AdaBoost chooses the same directions as coor-
dinate descent. But does it go the same distance?

Look at αt. Start again with the error rate εt:

εt =
∑

dt,i1[hj (xi)=yi] = dt,i = dt,i = d
t

−
i i:hj (xi)=yi i:Mij = 1

t

∑ ∑
t −

Starting from AdaBoost,

1 1 d
αt = ln

− εt 1 1
= ln

− −
,

2 εt 2 d−

as in coordinate descent.
So AdaBoost minimizes the exponential loss by coordinate descent.

6

6
6

8

Probabilistic Interpretation

This is not quite the same as logistic regression. Since AdaBoost approximately
minimizes the expected exponential loss over the whole distribution D, we can
get a relationship between it’s output and the conditional probabilities. As in
logistic regression, assume that there’s a distribution on y for each x.

Lemma (Hastie, Friedman, Tibshirani, 2001)

EY e−Y f(x)∼D(x)

is minimized at:
1 P (Y = 1

f(x) = ln
|x)

.
2 P (Y = −1|x)

Proof.

Ee−Y f(x) = P (Y = 1 x)e−f(x) + P (Y = 1 x)ef(x)

dE(e−Y f(x)
| − |

0 =
|x)

= −P (Y = 1|x)e−f(x) + P (Y = 1 x)ef(x)
df(x)

− |

P (Y = 1|x)e−f(x) = P (Y = −1|x)ef(x)

P (Y = 1|x) (1 P = 1
= e2f x) (Y

f(x) = ln
|x)

P (Y = −1|x)
⇒ .

2 P (Y = −1|x)

�
In logistic regression, we had

P (Y = 1 x)
f(x) = ln

|
P (Y = −1|x)

so we’re different by just a factor of 2.

From the Lemma, we can get probabilities out of AdaBoost by solving for P (Y =
1|x), which we denote by p:

1 P (Y = 1
f(x) = ln

|x) 1 p
=: ln

2 P (Y = −1
p

|x) 2 1− p
e2f(x) =

1− p
e2f(x) − pe2f(x) = p

e2f(x) = p(1 + e2f(x))

9

and finally,
e2f(x)

p = P (Y = 1|x) = .
1 + e2f(x)

Recall logistic regression had the same thing, but without the 2’s.

So now we can get probabilities out of AdaBoost.

• This is helpful if you want a probability of failure, or probability of spam,
or probability of discovering oil.

• Even though logistic regression minimizes the logistic loss and AdaBoost
minimizes the exponential loss, the formulas to get probabilities are some-
how very similar.

Training Error Decays Exponentially Fast

Theorem If the weak learning assumption holds, AdaBoost’s misclassification
error decays exponentially fast:

m
1

m

∑
1 2
[yi=H(xi)]

i=1

≤ e− γ2WLAT .

Proof. Start with

m m

Rtrain(λt+1) = Rtrain 1 1
(λt + αtejt) = e−[M(λt+αtej)]it = e−(Mλt)i−αtMijt

m

1

∑
m

i=1

α λ

∑
= e− t

∑
e−(M t)i + eαt

1 ∑ i=1

e−(Mλt)i. (5)
m m

i:Mij =1 i:Mij = 1t t −

To summarize this proof, we will find a recursive relationship between Rtrain(λt+1)
and Rtrain(λt), so we see how much the training error is reduced at each iteration.
Then we’ll uncoil the recursion to get the bound.

Let’s create the recursive relationship. Think about the distribution dt that we
defined from coordinate descent:

m

d = e−(Mλt)i
t,i /Zt where Zt = e−(Mλt)i (6)

6

∑
i=1

10

So you should think of e−(Mλt)i as an unnormalized version of the weight dt,i.
So that means:

Zt Zt
d+ =

∑ 1
d (Mλt)i
t,i =

m m m
i:Mij =1 i:Mt

∑
e− .

ij =1t

and we could do the same thing to show Ztd = 1 e (Mλ
m − t)i. Pluggingm

that

∑
i:Mij =

−
t −1

into (5),

Rtrain t
(λt) = e−α

Zt Z
+1 d+ + eα d .

m m
−

It’s kind of neat that Zt/m = Rtrain(λt), which we can see from the definition of
Zt in (6) and the definition of Rtrain in (3). Let’s use that.

Rtrain(λt+1) = Rtrain(λ α
t)[e

− d+ + eαd]−

= Rtrain(λ)[e−α(1− d) + eαt d].− −

Remember:

1
1

αt = ln

(
− 2

1 d 1 d−
) /2 1/

d
, so eα =

−

2

(
−
d−

)
and e−α =

(
−

d 1− d− −

)
.

Plugging: [(1/2 − 1/2
train d 1

R (λ) = Rtrain d
t+1 (λt)

−
(1 d) +

−
d

1− d −
−

)
− −

(
d−

)]
= Rtrain(λt)2 [d (1− − 1/2d)]−

1/2= Rtrain(λt)2 [εt(1− εt)] .

Uncoil the recursion, using for the base case λ train
1 = 0, so that R (0) = 1, then

T

Rtrain(λT) =
∏

2 εt(1 εt).
t=1

√
−

From all the way back at the beginning (on page 2 in the pseudocode) εt =
1/2− γt. So,

T

Rtrain(λT) =
∏

2
t=1

√(
1

2
− γt

)(
1

+ γt
2

)
=
∏

2
t

√
1

4
− γ2t =

∏
t

√
1− 4γ2t .

11

Using the inequality 1 + x ≤ ex, which is true for all x,

∏T √
− 2

1 4γ2 t
t ≤

∏√
e−4γ

2
t =

∏
e−2γ = e−

t

∑T
2 t=1 γ

2
t .

=1 t t

Now, we’ll use the weak learning assumption, which is that γt > γWLA for all t.
We’ll also use that the misclassification error is upper bounded by the exponential
loss:

m
1 ∑ ≤ ≤ −

∑T 2

1 γ2
[y) t=1

=H(x)] Rtrain(λT e 2 t e−2γWLAT .
m i i

i=1

≤

And that’s our bound.

1 Interpreting AdaBoost

Some points:

1. AdaBoost can be used in two ways:

• (j)
where the weak classifiers are truly weak (e.g., hj(xi) = xi).

• where the weak classifiers are strong, and come from another learning
algorithm, like a decision tree. The weak learning algorithm is then,
e.g., C4.5 or CART, and each possible tree it produces is one of the
hj’s.

You can think of the decision tree algorithm as a kind of “oracle” where
AdaBoost asks it at each round to come up with a tree hjt with low error.

So the weak learning algorithm does the argmaxj step in the algorithm.
In reality it might not truly find the argmax, but it will give a good di-
rection j (and that’s fine - as long as it chooses a good enough direction,
it’ll still converge ok).

2. The WLA does not hold in practice, but AdaBoost works anyway. (To see
why, you can just think of the statistical view of boosting.)

3. AdaBoost has an interpretation as a 2-player repeated game.

6

12

weak learning algorithm chooses jt ≡ column player chooses a pure strategy
dt ≡ mixed strategy for row player

4. Neither logistic regression nor AdaBoost has regularization... but AdaBoost
has a tendency not to overfit. There is lots of work to explain why this is, and
it seems to be completely due to AdaBoost’s iterative procedure - another
method for optimizing the exponential loss probably wouldn’t do as well.
There is a “margin” theory for boosting that explains a lot.

13

MIT OpenCourseWare
http://ocw.mit.edu

15.097 Prediction: Machine Learning and Statistics
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

