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We want to solve differentiable convex optimization problems of this form, which 
we call OPT: 

minimize	 f(x) 
x∈Rn 

subject to	 gi(x) ≤ 0, i = 1, . . . , m, 

hi(x) = 0, i = 1 . . . , p, 

where x ∈ Rn is the optimization variable, f : Rn → R, gi : Rn → R are differ
entiable convex functions , and hi : Rn → R are affine functions . 

Recall that a function g : G → R is convex if G is a convex set, and for any 
x, z ∈ G and θ ∈ [0, 1], we have g(θx+(1−θ)z) ≤ θg(x)+(1−θ)g(z). A function 

Tg is concave if −g is convex. An affine function has the form h(x) = a x + b for 
some a ∈ Rn, b ∈ R. (Affine functions are both convex and concave.) 

We could rewrite the OPT with the constraints in the objective: 

min ΘP (x) where 
x 

m	 pm m (1) 
ΘP (x) :=f(x) + ∞ 1[gi(x)>0] + ∞ 1[hi(x) =0]. 

i=1 i=1 

But this is hard to optimize because it is non-differentiable and not even contin
uous. Why don’t we replace ∞× 1[u≥0] with something nicer? A line αu seems 
like a dumb choice... 
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but for α ≥ 0 the penalty is in the right direction (we are penalized for con
straints being dissatisfied, and αu is a lower bound on 1[gi(x)>0]). 

Similarly, βu is a lower bound for ∞× 1[u  no matter what the sign of β is. 

For each constraint i, replacing ∞× 1[u≥0] by αu, where α ≥ 0 in the objective, 
and similarly replacing the ∞× 1[u  term by βu, gives the Lagrangian 

m pm m 
L(x, α, β) = f(x) + αigi(x) + βihi(x). (2) 

i=1 i=1 

We refer to x ∈ Rn as the primal variables of the Lagrangian. The second ar
gument of the Lagrangian is a vector α ∈ Rm . The third is a vector β ∈ Rp. 
Elements of α and β are collectively known as the dual variables of the La
grangian, or Lagrange multipliers. 

If we take the maximum of L with respect to α and β, where αi ≥ 0, we recover 
OPT. Let’s show this. 

For a particular x, let’s say the constraints are satisfied. So gi(x) ≤ 0, and 
to make the term αigi(x) as high as it can be, we set αi = 0 ∀i. Also, since 
hi(x) = 0 ∀i, the βi’s can be anything and it won’t change L. To summarize, 
if the constraints are satisfied, the value of maxα,β L is just f(x), which is the 
same as the value of ΘP . 
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If any constraint is not satisfied, then we can make L(x, α, β) infinite by fiddling 
with αi or βi, and then again the value of maxα,β L is the same as the value of ΘP . 

How?
 

So we have formally: 
ΘP (x) = max L(x, α, β). 

α,β;αi≥0,∀i 

Remember that we want to minimize ΘP (x). This problem is the primal problem. 

Specifically, the primal problem is: � � 

min 
x 

max 
α,β:αi≥0,∀i 

L(x, α, β) = min 
x 

ΘP (x). (3) 

In the equation above, the function ΘP : Rn → R is called the primal objective.
 

We say that a point x ∈ Rn is primal feasible if gi(x) ≤ 0, i = 1, . . . ,m and
 
∗hi(x) = 0, i = 1, . . . , p. The vector x ∈ Rn denotes the solution of (3), and 

∗ p = ΘP (x ∗) denotes the optimal value of the primal objective. 

It turns out that ΘP (x) is a convex function of x. Why is that? First, f(x) 
is convex. Each of the gi(x)’s are convex functions in x, and since the αi’s are 
constrained to be nonnegative, then αigi(x) is convex in x for each i. Similarly, 
each βihi(x) is convex in x (regardless of the sign of βi) since hi(x) is linear. 
Since the sum of convex functions is always convex, L is convex for each α and 
β. Finally, the maximum of a collection of convex functions is again a convex 
function, so we can conclude that ΘP (x) = maxα,β L(α, β, x) is a convex function 
of x. 

By switching the order of the minimization and maximization above, we obtain 
an entirely different optimization problem. 
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The dual problem is:   
max min L(x, α, β) = max ΘD(α, β). (4)

α,β:αi≥0,∀i x α,β:αi≥0,∀i 

Function ΘD : Rm × Rp → R is called the dual objective. 

We say that (α, β) are dual feasible if αi ≥ 0, i = 1 . . . ,m. 

Denote (α∗ , β∗) ∈ Rm × Rp as the solution of (4), and d∗ = ΘD(α
∗ , β∗) denote 

the optimal value of the dual objective. 

The dual objective ΘD(α, β), is a concave function of α and β. The dual objec
tive is:   

m pm m 
ΘD(α, β) = min L(x, α, β) = min f(x) + αigi(x) + βihi(x) . 

x x
i=1 i=1 

For any fixed value of x, the quantity inside the brackets is an affine function 
of α and β, and hence, concave. The f(x) is just a constant as far as α and 
β are concerned. Since the minimum of a collection of concave functions is also 
concave, we can conclude that ΘD(α, β) is a concave function of α and β. 

Interpreting the Dual Problem 

We make the following observation: 

∗Lemma 1. If (α, β) are dual feasible, then ΘD(α, β) ≤ p 

Proof. Because of the lower bounds we made, namely 

αigi(x) ≤ ∞× 1[gi(x)≥0] 

βihi(x) ≤ ∞× 1[hi(x  

we have, when α and β are dual feasible, 

L(x, α, β) ≤ ΘP (x) for all x. 

Taking the minx of both sides: 
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min L(x, α, β) ≤ min ΘP (x) . 
x x"    "    

∗ pΘD(α, β) 

• 

The lemma shows that given any dual feasible (α, β), the dual objective ΘD(α, β) 
∗provides a lower bound on the optimal value p of the primal problem. 

Since the dual problem is maxα,β ΘD(α, β), the dual problem can be seen as a 
∗search for the tightest possible lower bound on p . This gives rise to a property 

of any primal and dual optimization problem pairs known as weak duality : 

∗Lemma 2. For any pair of primal and dual problems, d∗ ≤ p . 

Rewritten, 

max min L(x, α, β) ≤ min max L(x, α, β). 
α,β:αi≥0,∀i x x α,β:αi≥0,∀i 

Intuitively, this makes sense: on the left, whatever the α, β player does, the x 
player gets to react to bring the value down. On the right, whatever the x player 
does, the α, β player reacts to bring the value up. And of course the player who 
plays last has the advantage. 

Prove it? (Hint: place your hand over the leftmost max to see it.) 
α,β 

For some primal/dual optimization problems, an even stronger result holds, 
known as strong duality . 

Lemma 3 (Strong Duality). For any pair of primal and dual problems which 
∗satisfy certain technical conditions called constraint qualifications , then d∗ = p . 

A number of different constraint qualifications exist, of which the most com
monly invoked is Slater’s condition: a primal/dual problem pair satisfy Slater’s 
condition if there exists some feasible primal solution x for which all inequality 
constraints are strictly satisfied (i.e. gi(x) < 0, i = 1 . . . ,m). In practice, nearly 
all convex problems satisfy some type of constraint qualification, and hence the 
primal and dual problem have the same optimal value. 
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KKT Conditions
 

For an unconstrained convex optimization problem, we know we are at the global 
minimum if the gradient is zero. The KKT conditions are the equivalent condi
tions for the global minimum of a constrained convex optimization problem. 

∗If strong duality holds and (x , α∗ , β∗) is optimal, then x ∗ minimizes L(x, α∗ , β∗) 
giving us the first KKT condition, Lagrangian stationarity : m m 

α ∗ β ∗�xL(x, α ∗ , β ∗ )|x ∗ = �xf(x)|x ∗ + i �xgi(x)|x ∗ + i �xhi(x)|x ∗ = 0 
i i 

We can interpret this condition by saying that the gradient of the objective 
function and constraint function must be parallel (and opposite). This concept 
is illustrated for a simple 2D optimization problem with one inequality constraint 
below. 

The curves are contours of f , and the line is the constraint boundary. At x ∗, the 
gradient of f and gradient of the constraint must be parallel and opposing so 
that we couldn’t move along the constraint boundary in order to get an improved 
objective value. 
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One interesting consequence of strong duality is next: 

Lemma 3 (Complementary Slackness). If strong duality holds, then αi 
∗ gi(x ∗) = 

0 for each i = 1 . . . ,m. 

Proof. Suppose that strong duality holds. 

∗ p = d ∗	 = ΘD(α ∗ , β ∗ ) 

= min L(x, α ∗ , β ∗ ) 
x 

∗ ≤ L(x , α ∗ , β ∗ ) 
∗ ≤ max L(x , α, β) 

α,β;αi≥0,∀i 
∗ = ΘP (x ∗ ) = f(x ∗ ) = p . 

The second last inequality is just from (1). This means that all the inequalities 
are actually equalities. In particular, 

m	 pm m 
∗ L(x , α ∗ , β ∗ ) = f(x ∗ ) + αi 

∗ gi(x ∗ ) + βi 
∗ hi(x ∗ ) = f(x ∗ ). 

i	 i 

So, 
m	 pm m 

αi 
∗ gi(x ∗ ) + βi 

∗ hi(x ∗ ) = 0. 
i i 

∗• Since x is primal feasible, each hi(x ∗) = 0, so the second terms are all 0. 

∗• Since αi 
∗’s are dual feasible, α∗ ≥ 0, and since x is primal feasible, gi(x ∗) ≤i 

0.
 

So each αi 
∗ gi(x ∗) ≤ 0, which means they are all 0.
 

αi 
∗ gi(x ∗ ) = 0 ∀i = 1, . . . , m. 

We can rewrite complementary slackness this way: 

αi 
∗ > 0 =⇒ gi(x ∗ ) = 0 (active constraints) 

gi(x ∗ ) < 0 =⇒ α ∗ = 0.i 

In the case of support vector machines (SVMs), active constraints are known as 
support vectors. 
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We can now characterize the optimal conditions for a primal dual optimization 
pair: 

∗Theorem 1 Suppose that x ∈ Rn , α∗ ∈ Rm, and β∗ ∈ Rp satisfy the following 
conditions: 

• (Primal feasibility) gi(x ∗) ≤ 0, i = 1, ..., m and hi(x ∗) = 0, i = 1, ..., p. 

• (Dual feasibility) α∗ ≥ 0, i = 1, . . . , m. i 

• (Complementary Slackness) αi 
∗ gi(x ∗) = 0, i = 1, . . . , m. 

∗• (Lagrangian stationary) xL(x , α∗ , β∗) = 0. 

∗Then x is primal optimal and (α∗ , β∗) are dual optimal. Furthermore, if strong 
∗duality holds, then any primal optimal x and dual optimal (α∗ , β∗) must satisfy 

all these conditions. 

These conditions are known as the Karush-Kuhn-Tucker (KKT) conditions.1 

1Incidentally, the KKT theorem has an interesting history. The result was originally derived by Karush in 
his 1939 master’s thesis but did not catch any attention until it was rediscovered in 1950 by two mathematicians 
Kuhn and Tucker. A variant of essentially the same result was also derived by John in 1948. 
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