Support Vector Machines
 MIT 15.097 Course Notes Cynthia Rudin

Credit: Ng, Hastie, Tibshirani, Friedman
Thanks: Şeyda Ertekin
Let's start with some intuition about margins.
The margin of an example $\mathbf{x}_{i}=$ "distance" from example to decision boundary

$$
=y_{i} f\left(\mathbf{x}_{i}\right)
$$

The margin is positive if the example is on the correct side of the decision boundary, otherwise it's negative.

Here's the intuition for SVM's:

- We want all examples to have large margins, want them to be as far from decision boundary as possible.
- That way, the decision boundary is more "stable," we are confident in all decisions.

Most other algorithms (logistic regression, decision trees, perceptron) don't generally produce large margins. (AdaBoost generally produces large margins.)

As in logistic regression and AdaBoost, function f is linear,

$$
f(\mathbf{x})=\sum_{j=1}^{m} \lambda^{(j)} x^{(j)}+\lambda_{0}
$$

Note that the intercept term can get swept into \mathbf{x} by adding a 1 as the last component of each \mathbf{x}. Then $f(\mathbf{x})$ would be just $\boldsymbol{\lambda}^{T} \mathbf{x}$ but for this lecture we'll keep the intercept term separately because SVM handles that term differently than if you put the intercept as a separate feature. We classify $\mathbf{x} \operatorname{using} \operatorname{sign}(f(\mathbf{x}))$.

If \mathbf{x}_{i} has a large margin, we are confident that we classified it correctly. So we're essentially suggesting to use the margin $y_{i} f\left(\mathbf{x}_{i}\right)$ to measure the confidence in our prediction.

But there is a problem with using $y_{i} f\left(\mathbf{x}_{i}\right)$ to measure confidence in prediction. There is some arbitrariness about it.

[^0]SVM's maximize the distance from the decision boundary to the nearest training example - they maximize the minimum margin. There is a geometric perspective too. I set the intercept to zero for this picture (so the decision boundary passes through the origin):

The decision boundary are \mathbf{x} 's where $\boldsymbol{\lambda}^{T} \mathbf{x}=0$. That means the unit vector for $\boldsymbol{\lambda}$ must be perpendicular to those x^{\prime} s that lie on the decision boundary.

Now that you have the intuition, we'll put the intercept back, and we have to translate the decision boundary, so it's really the set of \mathbf{x} 's where $\boldsymbol{\lambda}^{T} \mathbf{x}=\lambda_{0}$.

The margin of example i is denoted γ_{i} :

\mathbf{B} is the point on the decision boundary closest to the positive example $\mathbf{x}_{i} . \mathbf{B}$ is

$$
\mathbf{B}=\mathbf{x}_{i}-\gamma_{i} \frac{\boldsymbol{\lambda}}{\|\boldsymbol{\lambda}\|_{2}}
$$

since we moved $-\gamma_{i}$ units along the unit vector to get from the example to \mathbf{B}.
Since B lies on the decision boundary, it obeys $\boldsymbol{\lambda}^{T} \mathbf{x}+\lambda_{0}=0$, where \mathbf{x} is \mathbf{B}. (I wrote the intercept there explicitly). So,

$$
\begin{aligned}
\boldsymbol{\lambda}^{T}\left(\mathbf{x}_{i}-\gamma_{i} \frac{\boldsymbol{\lambda}}{\|\boldsymbol{\lambda}\|_{2}}\right)+\lambda_{0} & =0 \\
\boldsymbol{\lambda}^{T} \mathbf{x}_{i}-\gamma_{i} \frac{\|\boldsymbol{\lambda}\|_{2}^{2}}{\|\boldsymbol{\lambda}\|_{2}}+\lambda_{0} & =0
\end{aligned}
$$

Simplifying,

$$
\begin{aligned}
\gamma_{i} & =\frac{\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}}{\|\boldsymbol{\lambda}\|_{2}} \\
& =: \tilde{f}\left(\mathbf{x}_{i}\right) \quad(\text { this is the normalized version of } f) \\
& =y_{i} \tilde{f}\left(\mathbf{x}_{i}\right) \text { since } y_{i}=1
\end{aligned}
$$

Note that here we normalized so we wouldn't have the arbitrariness in the meaning of the margin.

If the example is negative, the same calculation works, with a few sign flips (we'd need to move γ_{i} units rather than $-\gamma_{i}$ units).

So the "geometric" margin from the picture is the same as the "functional" $\operatorname{margin} y_{i} \tilde{f}\left(\mathbf{x}_{i}\right)$.

Maximize the minimum margin

Support vector machines maximize the minimum margin. They would like to have all examples being far from the decision boundary. So they'll choose f this way:

$$
\begin{gathered}
\max _{f} \max _{\gamma} \gamma \quad \text { s.t. } \quad y_{i} f\left(\mathbf{x}_{i}\right) \geq \gamma \quad i=1 \ldots m \\
\max _{\gamma, \boldsymbol{\lambda}, \lambda_{0}} \gamma \quad \text { s.t. } \quad y_{i} \frac{\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}}{\|\boldsymbol{\lambda}\|_{2}} \geq \gamma \quad i=1 \ldots m \\
\max _{\gamma, \boldsymbol{\lambda}, \lambda_{0}} \gamma \quad \text { s.t. } \quad y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right) \geq \gamma\|\boldsymbol{\lambda}\|_{2} \quad i=1 \ldots m .
\end{gathered}
$$

For any $\boldsymbol{\lambda}$ and λ_{0} that satisfy this, any positively scaled multiple satisfies them too, so we can arbitrarily set $\|\boldsymbol{\lambda}\|_{2}=1 / \gamma$ so that the right side is 1 .

Now when we maximize γ, we're maximizing $\gamma=1 /\|\boldsymbol{\lambda}\|_{2}$. So we have

$$
\max _{\boldsymbol{\lambda}, \lambda_{0}} \frac{1}{\|\boldsymbol{\lambda}\|_{2}} \quad \text { s.t. } \quad y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right) \geq 1 \quad i=1 \ldots m
$$

Equivalently,

$$
\begin{equation*}
\min _{\lambda, \lambda_{0}} \frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2} \quad \text { s.t. } \quad y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)-1 \geq 0 \quad i=1 \ldots m \tag{1}
\end{equation*}
$$

(the $1 / 2$ and square are just for convenience) which is the same as:

$$
\min _{\lambda, \lambda_{0}} \frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2} \quad \text { s.t. } \quad-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1 \leq 0 \quad i=1 \ldots m
$$

leading to the Lagrangian

$$
\mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}\right], \boldsymbol{\alpha}\right)=\frac{1}{2} \sum_{j=1}^{n} \lambda^{(j) 2}+\sum_{i=1}^{m} \alpha_{i}\left[-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1\right]
$$

Writing the KKT conditions, starting with Lagrangian stationarity, where we need to find the gradient wrt $\boldsymbol{\lambda}$ and the derivative wrt λ_{0} :

$$
\begin{array}{rlrl}
\nabla_{\lambda} \mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}\right], \boldsymbol{\alpha}\right) & =\boldsymbol{\lambda}-\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}=\mathbf{0} \Longrightarrow \boldsymbol{\lambda}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i} . \\
\frac{\partial}{\partial \lambda_{0}} \mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}\right], \boldsymbol{\alpha}\right)=-\sum_{i=1}^{m} \alpha_{i} y_{i}=0 \Longrightarrow \sum_{i=1}^{m} \alpha_{i} y_{i}=0 . \\
\alpha_{i} \geq 0 & \forall i & \text { (dual feasibility) } \\
\alpha_{i}\left[-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1\right]=0 \quad \forall i & & \text { (complementary slackness) } \\
-y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)+1 \leq 0 . & \text { (primal feasibility) }
\end{array}
$$

Using the KKT conditions, we can simplify the Lagrangian.

$$
\mathcal{L}\left(\left[\boldsymbol{\lambda}, \lambda_{0}\right], \boldsymbol{\alpha}\right)=\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+\boldsymbol{\lambda}^{T} \sum_{i=1}^{m}\left(-\alpha_{i} y_{i} \mathbf{x}_{i}\right)+\sum_{i=1}^{m}\left(-\alpha_{i} y_{i} \lambda_{0}\right)+\sum_{i=1}^{m} \alpha_{i}
$$

(We just expanded terms. Now we'll plug in the first KKT condition.)

$$
=\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}-\|\boldsymbol{\lambda}\|_{2}^{2}-\lambda_{0} \sum_{i=1}^{m}\left(\alpha_{i} y_{i}\right)+\sum_{i=1}^{m} \alpha_{i}
$$

(Plug in the second KKT condition.)

$$
\begin{equation*}
=-\frac{1}{2} \sum_{j=1}^{m} \lambda^{(j)^{2}}+0 \quad+\sum_{i=1}^{m} \alpha_{i} \tag{2}
\end{equation*}
$$

Again using the first KKT condition, we can rewrite the first term.

$$
\begin{aligned}
-\frac{1}{2} \sum_{j=1}^{m} \lambda^{(j)^{2}} & =-\frac{1}{2} \sum_{j=1}^{m}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}^{(j)}\right)^{2} \\
& =-\frac{1}{2} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{k=1}^{m} \alpha_{i} \alpha_{k} y_{i} y_{k} x_{i}^{(j)} x_{k}^{(j)} \\
& =-\frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k}
\end{aligned}
$$

Plugging back into the Lagrangian (2), which now only depends on $\boldsymbol{\alpha}$, and putting in the second and third KKT conditions gives us the dual problem;

$$
\max _{\alpha} \mathcal{L}(\boldsymbol{\alpha})
$$

where

$$
\mathcal{L}(\boldsymbol{\alpha})=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, k} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k} \quad \text { s.t. } \quad\left\{\begin{array}{l}
\alpha_{i} \geq 0 \quad i=1 \ldots m \tag{3}\\
\sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{array}\right.
$$

We'll use the last two KKT conditions in what follows, for instance to get conditions on λ_{0}, but what we've already done is enough to define the dual problem for $\boldsymbol{\alpha}$.

We can solve this dual problem. Either (i) we'd use a generic quadratic programming solver, or (ii) use another algorithm, like SMO, which I will discuss
later. For now, assume we solved it. So we have $\alpha_{1}^{*}, \ldots, \alpha_{m}^{*}$. We can use the solution of the dual problem to get the solution of the primal problem. We can plug $\boldsymbol{\alpha}^{*}$ into the first KKT condition to get

$$
\begin{equation*}
\boldsymbol{\lambda}^{*}=\sum_{i=1}^{m} \alpha_{i}^{*} y_{i} \mathbf{x}_{i} \tag{4}
\end{equation*}
$$

We still need to get λ_{0}^{*}, but we can see something cool in the process.

Support Vectors

Look at the complementary slackness KKT condition and the primal and dual feasibility conditions:

$$
\alpha_{i}^{*}\left[-y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right)+1\right]=0 \Rightarrow\left\{\begin{array}{l}
\alpha_{i}^{*}>0 \Rightarrow y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right)=1 \\
\alpha_{i}^{*}<0(\text { Can't happen }) \\
-y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right)+1<0 \Rightarrow \alpha_{i}^{*}=0 \\
-y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right)+1>0 \text { (Can't happen) }
\end{array}\right.
$$

Define the optimal (scaled) scoring function: $f^{*}\left(\mathbf{x}_{i}\right)=\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}$, then

$$
\left\{\begin{array}{ccc}
\alpha_{i}^{*}>0 & \Rightarrow & y_{i} f^{*}\left(\mathbf{x}_{i}\right)=\text { scaled } \operatorname{margin}_{i}=1 \\
1<y_{i} f^{*}\left(\mathbf{x}_{i}\right) & \Rightarrow & \alpha_{i}^{*}=0
\end{array}\right.
$$

The examples in the first category, for which the scaled margin is 1 and the constraints are active are called support vectors. They are the closest to the decision boundary.

Image by MIT OpenCourseWare.

Finish What We Were Doing Earlier

To get λ_{0}^{*}, use the complementarity condition for any of the support vectors (in other words, use the fact that the unnormalized margin of the support vectors is one):

$$
1=y_{i}\left(\boldsymbol{\lambda}^{* T} \mathbf{x}_{i}+\lambda_{0}^{*}\right) .
$$

If you take a positive support vector, $y_{i}=1$, then

$$
\lambda_{0}^{*}=1-\boldsymbol{\lambda}^{* T} \mathbf{x}_{i} .
$$

Written another way, since the support vectors have the smallest margins,

$$
\lambda_{0}^{*}=1-\min _{i: y_{i}=1} \boldsymbol{\lambda}^{* T} \mathbf{x}_{i} .
$$

So that's the solution! Just to recap, to get the scoring function f^{*} for SVM, you'd compute $\boldsymbol{\alpha}^{*}$ from the dual problem (3), plug it into (4) to get $\boldsymbol{\lambda}^{*}$, plug that into the equation above to get λ_{0}^{*}, and that's the solution to the primal problem, and the coefficients for f^{*}.

Because of the form of the solution:

$$
\boldsymbol{\lambda}^{*}=\sum_{i=1}^{m} \alpha_{i}^{*} y_{i} \mathbf{x}_{i} .
$$

it is possible that $\boldsymbol{\lambda}^{*}$ is very fast to calculate.
Why is that? Think support vectors.

The Nonseparable Case

If there is no separating hyperplane,

there is no feasible solution to the problem we wrote above. Most real problems are nonseparable.

Let's fix our SVM so it can accommodate the nonseparable case. The new formulation will penalize mistakes the farther they are from the decision boundary. So we are allowed to make mistakes now, but we pay a price.

Let's change our primal problem (1) to this new primal problem:

$$
\min _{\boldsymbol{\lambda}, \lambda_{0}, \xi} \frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+C \sum_{i=1}^{m} \xi_{i} \quad \text { s.t. } \quad\left\{\begin{array}{l}
y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right) \geq 1-\xi_{i} \tag{5}\\
\xi_{i} \geq 0
\end{array}\right.
$$

So the constraints allow some slack of size ξ_{i}, but we pay a price for it in the objective. That is, if $y_{i} f\left(\mathbf{x}_{i}\right) \geq 1$ then ξ_{i} gets set to 0 , penalty is 0 . Otherwise, if $y_{i} f\left(\mathbf{x}_{i}\right)=1-\xi_{i}$, we pay price ξ_{i}.

Parameter C trades off between the twin goals of making the $\|\boldsymbol{\lambda}\|_{2}^{2}$ small (making what-was-the-minimum-margin $1 /\|\boldsymbol{\lambda}\|_{2}^{2}$ large) and ensuring that most examples have margin at least $1 /\|\boldsymbol{\lambda}\|_{2}^{2}$.

Going on a Little Tangent

Rewrite the penalty another way:
If $y_{i} f\left(\mathbf{x}_{i}\right) \geq 1$, zero penalty. Else, pay price $\xi_{i}=1-y_{i} f\left(\mathbf{x}_{i}\right)$
Third time's the charm:
Pay price $\xi_{i}=\left\lfloor 1-y_{i} f\left(\mathbf{x}_{i}\right)\right\rfloor_{+}$ where this notation $\lfloor z\rfloor_{+}$means take the maximum of z and 0 .

Equation (5) becomes:

$$
\min _{\lambda, \lambda_{0}} \frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+C \sum_{i=1}^{m}\left\lfloor 1-y_{i} f\left(\mathbf{x}_{i}\right)\right\rfloor_{+}
$$

Does that look familiar?

The Dual for the Nonseparable Case

Form the Lagrangian of (5):

$$
\mathcal{L}(\boldsymbol{\lambda}, b, \xi, \alpha, r)=\frac{1}{2}\|\boldsymbol{\lambda}\|_{2}^{2}+C \sum_{i=1}^{m} \xi_{i}-\sum_{i=1}^{m} \alpha_{i}\left[y_{i}\left(\boldsymbol{\lambda}^{T} \mathbf{x}_{i}+\lambda_{0}\right)-1+\xi_{i}\right]-\sum_{i=1}^{m} r_{i} \xi_{i}
$$

where α_{i} 's and r_{i} 's are Lagrange multipliers (constrained to be ≥ 0). The dual turns out to be (after some work)

$$
\max _{\alpha} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, k=1}^{m} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k} \quad \text { s.t. } \quad\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C \quad i=1 \ldots m \tag{6}\\
\sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{array}\right.
$$

So the only difference from the original problem's Lagrangian (3) is that $0 \leq \alpha_{i}$ was changed to $0 \leq \alpha_{i} \leq C$. Neat!

Solving the dual problem with SMO

SMO (Sequential Minimal Optimization) is a type of coordinate ascent algorithm, but adapted to SVM so that the solution always stays within the feasible region.

Start with (6). Let's say you want to hold $\alpha_{2}, \ldots, \alpha_{m}$ fixed and take a coordinate step in the first direction. That is, change α_{1} to maximize the objective in (6). Can we make any progress? Can we get a better feasible solution by doing this?

Turns out, no. Look at the constraint in (6), $\sum_{i=1}^{m} \alpha_{i} y_{i}=0$. This means:

$$
\begin{aligned}
\alpha_{1} y_{1} & =-\sum_{i=2}^{m} \alpha_{i} y_{i}, \text { or multiplying by } y_{1}, \\
\alpha_{1} & =-y_{1} \sum_{i=2}^{m} \alpha_{i} y_{i} .
\end{aligned}
$$

So, since $\alpha_{2}, \ldots, \alpha_{m}$ are fixed, α_{1} is also fixed.

So, if we want to update any of the α_{i} 's, we need to update at least 2 of them simultaneously to keep the solution feasible (i.e., to keep the constraints satisfied).

Start with a feasible vector $\boldsymbol{\alpha}$. Let's update α_{1} and α_{2}, holding $\alpha_{3}, \ldots, \alpha_{m}$ fixed. What values of α_{1} and α_{2} are we allowed to choose?

Again, the constraint is: $\alpha_{1} y_{1}+\alpha_{2} y_{2}=-\sum_{i=3}^{m} \alpha_{i} y_{i}=: \zeta$ (fixed constant).

We are only allowed to choose α_{1}, α_{2} on the line, so when we pick α_{2}, we get α_{1} automatically, from

$$
\begin{aligned}
\alpha_{1} & =\frac{1}{y_{1}}\left(\zeta-\alpha_{2} y_{2}\right) \\
& =y_{1}\left(\zeta-\alpha_{2} y_{2}\right) \quad\left(y_{1}=1 / y_{1} \text { since } y_{1} \in\{+1,-1\}\right) .
\end{aligned}
$$

Also, the other constraints in (6) say $0 \leq \alpha_{1}, \alpha_{2} \leq C$. So, α_{2} needs to be within $[\mathrm{L}, \mathrm{H}]$ on the figure (in order for α_{1} to stay within $[0, C]$), where we will always have $0 \leq \mathrm{L}, \mathrm{H} \leq C$. To do the coordinate ascent step, we will optimize the objective over α_{2}, keeping it within [L,H]. Intuitively, (6) becomes:

$$
\begin{equation*}
\max _{\alpha_{2} \in[\mathrm{~L}, \mathrm{H}]}\left[\alpha_{1}+\alpha_{2}+\text { constants }-\frac{1}{2} \sum_{i, k} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k}\right] \text { where } \alpha_{1}=y_{1}\left(\zeta-\alpha_{2} y_{2}\right) . \tag{7}
\end{equation*}
$$

The objective is quadratic in α_{2}. This means we can just set its derivative to 0 to optimize it and get α_{2} for the next iteration of SMO. If the optimal value is
outside of $[\mathrm{L}, \mathrm{H}]$, just choose α_{2} to be either L or H for the next iteration.
For instance, if this is a plot of (7)'s objective (sometimes it doesn't look like this, sometimes it's upside-down), then we'll choose :

Note: there are heuristics to choose the order of α_{i} 's chosen to update.

MIT OpenCourseWare
http://ocw.mit.edu

15.097 Prediction: Machine Learning and Statistics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: How? What should we do about it?

