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∑

Linear Alternative Perspective 

Programming 

LP : minimize c · x 

s.t. ai · x = bi, i  = 1, . . . ,m  

nx ∈ �+. 

n“c · x” means the linear function “ j=1 cjxj ” 

n n�+ := {x ∈ � | x ≥ 0} is the nonnegative orthant. 

n is a convex cone.�+


K is convex cone if x, w ∈ K and α, β ≥ 0 ⇒ αx + βw ∈ K.
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Linear Alternative Perspective 

Programming 

LP : minimize c · x 

s.t. ai · x = bi, i  = 1, . . . ,m  

nx ∈ �+. 

“Minimize the linear function c · x, subject to the condition that x 
must solve m given equations ai · x = bi, i  = 1, . . . ,m, and that 

nx must lie in the convex cone K = �+.” 
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∑ 

∑ ∑ 
( ) 

Linear Alternative Perspective 

Programming LP Dual Problem... 

m 
LD : maximize yibi 

i=1 
m 

s.t. yiai + s = c 
i=1 

ns ∈ �+. 

For feasible solutions x of LP and (y, s) of LD, the duality gap 
is simply 

m m 

c · x − yibi = c − yiai · x = s · x ≥ 0 
i=1 i=1 
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∑ 

Linear Alternative Perspective 

Programming ...LP Dual Problem


∗ ∗If LP and LD are feasible, then there exists x ∗ and (y , s  ) 
feasible for the primal and dual, respectively, for which 

m 
∗ ∗ ∗ ∗ c · x − yibi = s · x = 0  

i=1 
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Semidefinite 
Cone 

Facts about the 

If X is an n × n matrix, then X is a symmetric positive 
semidefinite (SPSD) matrix if X = XT and 

vTXv  ≥ 0 for any v ∈ �n 

If X is an n × n matrix, then X is a symmetric positive definite 
(SPD) matrix if X = XT and 

vTXv  >  0 for any v ∈ �n, v  �= 0  
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Semidefinite 
Cone 

Facts about the 

Sn denotes the set of symmetric n × n matrices 

Sn 
+ denotes the set of (SPSD) n × n matrices. 

Sn 
++ denotes the set of (SPD) n × n matrices. 
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Facts about the

Semidefinite

Cone


Let X, Y ∈ Sn .


“X � 0” denotes that X is SPSD


“X � Y ” denotes that X − Y � 0


“X 	 0” to denote that X is SPD, etc.


Remark: Sn = {X ∈ Sn | X � 0} is a convex cone.
+ 
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Facts about 
Eigenvalues and 
Eigenvectors 

If M is a square n × n matrix, then λ is an eigenvalue of M with 
corresponding eigenvector q if 

Mq  = λq and q �
= 0 . 

Let λ1, λ2, . . . , λn enumerate the eigenvalues of M . 
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[ ] 

Facts about

Eigenvalues and

Eigenvectors


The corresponding eigenvectors q1, q2, . . . , qn of M can be 
chosen so that they are orthonormal, namely 

i
)T ( 

qjq = 0 for i � ( 
i
)T ( i

) 
= j, and q q = 1  

Define: 
2 nQ := q 1 q · · ·  q 

Then Q is an orthonormal matrix: 

QTQ = I,  equivalently QT = Q−1 
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Facts about

Eigenvalues and

Eigenvectors


λ1, λ2, . . . , λn are the eigenvalues of M 
1q , q2, . . . , qn are the corresponding orthonormal eigenvectors of 

M 
2 nQ := q 1 q · · ·  q 

Q−1QTQ = I,  equivalently QT = 

Define D:   
λ1 0 0  0 λ2  D :=  . . .  .


0 λn 

Property: M = QDQT . 
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Facts about

Eigenvalues and

Eigenvectors


The decomposition of M into M = QDQT is called its 
eigendecomposition. 
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Facts about

Symmetric

Matrices


• If X ∈ Sn, then X = QDQT for some orthonormal matrix Q 
and some diagonal matrix D. The columns of Q form a set of n 
orthogonal eigenvectors of X, whose eigenvalues are the 
corresponding entries of the diagonal matrix D. 

• X � 0 if and only if X = QDQT where the eigenvalues (i.e.,

the diagonal entries of D) are all nonnegative.


• X 	 0 if and only if X = QDQT where the eigenvalues (i.e.,

the diagonal entries of D) are all positive.
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Facts about 
Symmetric
Matrices 

• If M is symmetric, then 
n 

det(M ) =  λj 

j=1 
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( ) 

Facts about 
Symmetric
Matrices 

• Consider the matrix M defined as follows:


P v 
M = T , 

v d 

where P 	 0, v is a vector, and d is a scalar. Then M � 0 if 
TP −1and only if d − v v ≥ 0.


• For a given column vector a, the matrix X := aaT is SPSD, 
i.e., X = aaT � 0. 

• If M � 0, then there is a matrix N for which M = NTN . To  
1

see this, simply take N = D2QT . 
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SDP 
X 

Semidefinite Programming 

Think about 

Let X ∈ Sn. Think of X as: 

• a matrix 

• an array of n2 components of the form (x11, . . . , xnn) 

• an object (a vector) in the space Sn . 

All three different equivalent ways of looking at X will be useful. 
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∑ ∑


Semidefinite Programming

SDP 

Linear Function of X 

Let X ∈ Sn. What will a linear function of X look like? 

If C(X) is a linear function of X, then C(X) can be written as 
C • X, where 

n n 

C • X := CijXij. 
i=1 j=1 

There is no loss of generality in assuming that the matrix C is 
also symmetric. 
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SDP 
Semidefinite Programming 

Definition of SDP 

SDP : minimize C • X


s.t. Ai • X = bi , i  = 1, . . . ,m,  

X � 0, 

“X � 0” is the same as “X ∈ Sn” + 

The data for SDP consists of the symmetric matrix C (which is 
the data for the objective function) and the m symmetric matrices 
A1, . . . ,Am, and the m−vector b, which form the m linear 
equations. 
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Semidefinite Programming

SDP 

Example... 

   	   
1 0 1  0 2 8  ( )	 1 2 3

11 	 A1 =  0 3 7  , A2 =  2 6 0 , b  = , and C =  2 9 0  ,
19

1 7 5  8 0 4  3 0 7  

The variable X will be the 3 × 3 symmetric matrix: 	 

x11 x12 x13 X =  x21 x22 x23 , 
x31 x32 x33 

SDP : minimize x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33 

s.t.	 x11 + 0x12 + 2x13 + 3x22 + 14x23 + 5x33 = 11  
0x11 + 4x12 + 16x13 + 6x22 + 0x23 + 4x33 = 19  

	  
x11 x12 x13


X =  x21 x22 x23 � 0.

x31 x32 x33
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Semidefinite Programming

SDP 

...Example 

SDP : minimize x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33 

s.t.	 x11 + 0x12 + 2x13 + 3x22 + 14x23 + 5x33 = 11  
0x11 + 4x12 + 16x13 + 6x22 + 0x23 + 4x33 = 19  

	 

x11 x12 x13


X =  x21 x22 x23  � 0.

x31 x32 x33


It may be helpful to think of “X � 0” as stating that each of the n eigenvalues 
of X must be nonnegative. 
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Semidefinite Programming 
SDP 

LP ⊂ SDP 

LP : minimize c · x 
s.t. ai · x = bi, i  = 1, . . . ,m  

nx ∈ �+. 

Define:  	   
ai1 0 . . .  0 c1 0 . . .  0  0   0 . . .  0 	  a

.
i2 . . .  0 

.  , i  = 1, . . . , m,  and C =  ..
c
..
2 

. . . ..  .Ai =  .. . . . . . 
. . .	 . . . 
0 0 . . .  ain	 0 0 . . .  cn 

SDP : minimize C • X 
s.t.	 Ai • X = bi , i  = 1, . . . , m,  

Xij = 0, i  = 1, . . . , n,  j  = i + 1, . . . , n,  	  
x1 0 . . .  0  0 x2 . . .  0 	 .  � 0,X =  .. .. . . . . 
. . . 
0 0 . . .  xn 
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∑ 

SDP Duality


m 
SDD : maximize yibi 

i=1 

m 
s.t.	 yiAi + S = C 

i=1 

S � 0. 

Notice 
m 

S = C − yiAi � 0 
i=1 
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∑ 

∑ 

SDP Duality


and so equivalently: 

m 
SDD : maximize yibi 

i=1 

m 
s.t. C − yiAi � 0 

i=1 
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Example

SDP Duality 

   	   ( )	 1 2 31 0 1 	 0 2 8  
11 	 A1 =  0 3 7  , A2 =  2 6 0 , b  = , and C =  2 9 0
19

1 7 5  8 0 4  3 0 7  

SDD : maximize 11y1 + 19y2     	 

1 0 1  0 2 8 	 1 2 3 
s.t.	 y1 0 3 7 + y2 2 6 0 + S =  2 9 0  
1 7 5  8 0 4  3 0 7  

S � 0 
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Example

SDP Duality 

SDD : maximize 11y1 + 19y2     	  
1 0 1  0 2 8 	 1 2 3  s.t.	 y1 0 3 7 + y2 2 6 0 + S =  2 9 0  
1 7 5  8 0 4  3 0 7  

S � 0 
is the same as: 

SDD : maximize	 11y1 + 19y2 

s.t. 	  
1 − 1y1 − 0y2 2 − 0y1 − 2y2 3 − 1y1 − 8y2  2 − 0y1 − 2y2 9 − 3y1 − 6y2 0 − 7y1 − 0y2  � 0. 
3 − 1y1 − 8y2 0 − 7y1 − 0y2 7 − 5y1 − 4y2 
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∑ 

Weak Duality

SDP Duality


Weak Duality Theorem: Given a feasible solution X of SDP 
and a feasible solution (y, S) of SDD, the duality gap is 

m 

C • X − yibi = S • X ≥ 0 . 
i=1 

If 
m 

C • X − yibi = 0  , 
i=1 

then X and (y, S) are each optimal solutions to SDP and 
SDD, respectively, and furthermore, SX = 0. 
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SDP Duality 
Strong Duality 

∗ ∗Strong Duality Theorem: Let z and zD denote the optimal P 

objective function values of SDP and SDD, respectively. 
Suppose that there exists a feasible solution X̂ of SDP such that 
X 	 0, and that there exists a feasible solution (ˆ ˆˆ y,S) of SDD 
such that Ŝ 	 0. Then both SDP and SDD attain their optimal 
values, and 

∗ ∗ zP = zD . 
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SDP 

Some Important 
Weaknesses of 

• There may be a finite or infinite duality gap.


• The primal and/or dual may or may not attain their optima.


• Both programs will attain their common optimal value if both

programs have feasible solutions that are SPD.


• There is no finite algorithm for solving SDP .


• There is a simplex algorithm, but it is not a finite algorithm. 
There is no direct analog of a “basic feasible solution” for SDP . 
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The MAX CUT 
Problem 

M. Goemans and D. Williamson, Improved 
Approximation Algorithms for Maximum Cut and 
Satisf iability Problems using Semidef inite 
Programming, J. ACM 42 1115-1145, 1995. 
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The MAX CUT

Problem


G is an undirected graph with nodes N = {1, . . . , n} and edge 
set E. 

Let wij = wji be the weight on edge (i, j), for  (i, j) ∈ E. 

We assume that wij ≥ 0 for all (i, j) ∈ E. 

The MAX CUT problem is to determine a subset S of the nodes 
N for which the sum of the weights of the edges that cross from 
S to its complement ¯ S := N \ S).S is maximized ( ̄
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∑ ∑ 

The MAX CUT Formulations 

Problem 

The MAX CUT problem is to determine a subset S of the nodes 
N for which the sum of the weights wij of the edges that cross 
from S to its complement ¯ S := N \ S).S is maximized ( ̄

¯Let xj = 1  for j ∈ S and xj = −1 for j ∈ S. 

n n 
1MAXCUT  : maximizex 4 wij(1 − xixj ) 

i=1 j=1 

s.t. xj ∈ {−1, 1}, j  = 1, . . . , n.  
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∑ ∑ 

The MAX CUT Formulations 

Problem 

n n 
1MAXCUT  : maximizex 4 wij(1 − xixj) 

i=1 j=1 

s.t. xj ∈ {−1,1}, j  = 1, . . . , n.  

Let 
Y = xxT . 

Then 
Yij = xixj i = 1, . . . , n,  j  = 1, . . . , n.  
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∑ ∑ 

The MAX CUT Formulations


Problem


Also let W be the matrix whose (i, j)th element is wij for 
i = 1, . . . , n  and j = 1, . . . , n. Then 

n n 
MAXCUT  : maximizeY,x 

1	 wij (1 − Yij)4 
i=1 j=1 

s.t.	 xj ∈ {−1,1}, j  = 1, . . . , n  

Y = xxT . 
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∑ ∑ 

The MAX CUT Formulations 

Problem 

n n 
MAXCUT  : maximizeY,x 

1	 wij (1 − Yij)4 
i=1 j=1 

s.t.	 xj ∈ {−1, 1}, j  = 1, . . . , n  

Y = xxT . 
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∑ ∑ 

The MAX CUT Formulations


Problem


The first set of constraints are equivalent to 
Yjj = 1, j  = 1, . . . , n. 

n n 
MAXCUT  : maximizeY,x 

1	 wij (1 − Yij)4 
i=1 j=1 

s.t.	 Yjj = 1, j  = 1, . . . , n  

Y = xxT . 
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∑ ∑ 

The MAX CUT Formulations 

Problem 

n n 
MAXCUT  : maximizeY,x 

1 wij (1 − Yij)4 
i=1 j=1 

s.t. Yjj = 1, j  = 1, . . . , n  

Y = xxT . 

Notice that the matrix Y = xxT is a rank-1 SPSD matrix. 
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The MAX CUT Formulations


Problem


We relax this condition by removing the rank-1 restriction:


n n 
1RELAX : maximizeY 4 wij (1 − Yij ) 

i=1 j=1 

s.t.	 Yjj = 1, j  = 1, . . .  , n  

Y � 0. 

It is therefore easy to see that RELAX provides an upper bound 
on MAXCUT, i.e., 

MAXCUT  ≤ RELAX.
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∑ ∑ 

( ) 

The MAX CUT Computing a Good Solution 

Problem 

n n 
1RELAX : maximizeY 4 wij (1 − Yij ) 

i=1 j=1 

s.t. Yjj = 1, j  = 1, . . .  , n  

Y � 0. 

Let Ŷ solve RELAX 

Factorize ˆ = V T ˆY ˆ V 

vT ˆˆ v1 ˆ ˆ Yij = V T ˆ = î vjV = [ˆ v2 · · ·  vn] and ˆ ˆ V 
ij 
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( ) 

The MAX CUT Computing a Good Solution


Problem


Let ˆ
Y solve RELAX 

Factorize ˆ = V T ˆY ˆ V 

vT ˆˆ v1 ˆ ˆ Yij = V T ˆ = î vjV = [ˆ v2 · · ·  vn] and ˆ ˆ V 
ij 

Let r be a random uniform vector on the unit n-sphere Sn 

S := {i | rT v̂i ≥ 0} 

S := {i | rT v̂i < 0} 
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The MAX CUT Computing a Good Solution 

Problem 

Proposition: 

vT ˆ( 
vi) � vj) 

) 
= 

arccos(ˆ vj )iP sign(rT ˆ = sign(rT ˆ . 
π 
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V̂i 

Vj 
^ 

0 

The MAX CUT 
Problem 

Computing a Good Solution 
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The MAX CUT 
Problem 

Computing a Good Solution 

Let r be a random uniform vector on the unit n-sphere Sn 

S := {i | rT v̂i ≥ 0} 

S := {i | rT v̂i < 0} 

Let E[Cut] denote the expected value of this cut. 

Theorem: E[Cut] ≥ 0.87856 × MAXCUT  
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∑ ( ) 

∑ 

The MAX CUT Computing a Good Solution 

Problem 

vi) � vj )E[Cut] = 1 wij × P sign(rT ˆ = sign(rT ˆ2 
i,j 

T
1 ∑ arccos( î ˆv vj )
= 2 wij
 π 

i,j 

1 ∑ arccos(Ŷij )= 2 wij π 
i,j 

= 1 wij arccos(Ŷij )2π 
i,j 

2003 Massachusetts Institute of Technology 44



∑ 

( ) 

( ) 

The MAX CUT Computing a Good Solution 

Problem 

E[Cut] =  1 wij arccos(Ŷij )2π 
i,j 

= 
∑ 

wij 1 − ˆ 2 arccos( ˆ1 Yij )Yij Yij4 π 1− ̂
i,j ∑ 2 arccos(t)wij 1 − ˆ≥ 1 Yij min−1≤t≤1 π4 1−t 
i,j 

2 θ= RELAX × min0≤θ≤π π 1−cos θ 
≥ RELAX × 0.87856 
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The MAX CUT 
Problem 

Computing a Good Solution 

So we have 

MAXCUT  ≥ E[Cut] ≥ RELAX × 0.87856 ≥ MAXCUT  × 0.87856 

This is an impressive result, in that it states that the value of the 
semidefinite relaxation is guaranteed to be no more than 12.2% 
higher than the value of NP  -hard problem MAXCUT. 
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The Logarithmic Barrier Function for SPD Matrices


Let X � 0, equivalently X ∈ Sn .+

X will have n nonnegative eigenvalues, say 
λ1(X), . . . , λn(X) ≥ 0 (possibly counting multiplicities). 

∂Sn = {X ∈ Sn | λj(X) ≥ 0, j  = 1, . . . , n,  + 

and λj(X) = 0 for some j ∈ {1, . . . , n}}. 
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∑ ∏ 

The Logarithmic Barrier Function for SPD Matrices


∂Sn = {X ∈ Sn | λj(X) ≥ 0, j  = 1, . . . , n,  + 

and λj(X) =  0  for some j ∈ {1, . . . , n}}. 
A natural barrier function is: 

  
n n 

B(X) :=  − ln(λi(X)) = − ln  λi(X) = − ln(det(X)). 
j=1 j=1 

This function is called the log-determinant function or the 
logarithmic barrier function for the semidefinite cone. 
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( ) ( ) 

∑ 

The Logarithmic Barrier Function for SPD Matrices


  
n n 

B(X) :=  − ln(λi(X)) = − ln  λi(X) = − ln(det(X)). 
j=1 j=1 

¯Quadratic Taylor expansion at X = X: 

¯ ¯ X−1 ¯ 2DX−1 ¯ 2DX−1 
B(X + αD) ≈ B(X) +  α ¯ • D +

1 
α2 X−1 ¯ 2 • X−1 ¯ 2 .

2

B(X) has the same remarkable properties in the context of 
interior-point methods for SDP as the barrier function 

n− j=1 ln(xj ) does in the context of linear optimization. 
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Interior-point Primal and Dual SDP 

Methods for SDP 

SDP : minimize C • X 
s.t.	 Ai • X = bi , i  = 1, .  . . , m,  

X � 0 
and 

m 
SDD : maximize yibi 

i=1 
m 

s.t.	 yiAi + S = C 
i=1 
S � 0 . 

If X and (y, S) are feasible for the primal and the dual, the duality gap is: 
m 

C • X − yibi = S • X ≥ 0 . 
i=1 

Also, 
S • X = 0  ⇐⇒ SX = 0  .
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∑ ∏ 

Interior-point Primal and Dual SDP 

Methods for SDP 

  
n n 

B(X) =  − ln(λi(X)) = − ln  λi(X) = − ln(det(X)) . 
j=1 j=1 

Consider: 

BSDP (µ) : minimize C • X − µ ln(det(X)) 

s.t. Ai • X = bi , i  = 1,  . . . ,  m,  

X 	 0. 

Let fµ(X) denote the objective function of BSDP (µ). Then: 

−∇fµ(X) =  C − µX−1 
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∑ 

Interior-point Primal and Dual SDP 

Methods for SDP 

BSDP (µ) : minimize C • X − µ ln(det(X)) 

s.t. Ai • X = bi , i  = 1,  . . . ,  m,  

X 	 0. 

∇fµ(X) =  C − µX−1 

Karush-Kuhn-Tucker conditions for BSDP (µ) are: 

  Ai • X = bi , i  = 1, . . .  , m,        
X 	 0,    m     C − µX−1 = yiAi. 

i=1 
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∑ 

Interior-point Primal and Dual SDP 

Methods for SDP 

  Ai • X = bi , i  = 1, . . . ,m,    
X 	 0, 

m    C − µX−1 = yiAi. 
i=1 

Define 
S = µX−1 , 

which implies 
XS  = µI ,
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∑ 

Interior-point Primal and Dual SDP 

Methods for SDP 

and rewrite KKT conditions as: 

  Ai • X = bi , i  = 1, . . .  ,m,  X  	 0   m 
yiAi + S = C   i=1  

XS  = µI. 
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Interior-point Primal and Dual SDP 

Methods for SDP 

  Ai • X = bi , i  = 1, . . .  ,m,  X  	 0   m 
yiAi + S = C   i=1  

XS  = µI. 

If (X, y, S) is a solution of this system, then X is feasible for 
SDP , (y, S) is feasible for SDD, and the resulting duality gap is 

n n n n 

S • X = SijXij = (SX)jj = (µI)jj = nµ. 
i=1 j=1 j=1 j=1 
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∑ 

Interior-point Primal and Dual SDP 

Methods for SDP 

  Ai • X = bi , i  = 1, . . .  ,m,  X  	 0   m 
yiAi + S = C   i=1  

XS  = µI. 

If (X, y, S) is a solution of this system, then X is feasible for 
SDP , (y, S) is feasible for SDD, the duality gap is 

S • X = nµ.
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Interior-point 
Methods for SDP 

Primal and Dual SDP 

This suggests that we try solving BSDP (µ) for a variety of 
values of µ as µ → 0. 

Interior-point methods for SDP are very similar to those for linear 
optimization, in that they use Newton’s method to solve the KKT 
system as µ → 0. 
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Website for SDP 

A good website for semidefinite programming is: 

http://www-user.tu-chemnitz.de/ helmberg/semidef.html. 
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