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The highlights of
Differential Evolution (DE)

A population of solution vectors are successively updated by 
addition, subtraction, and component swapping, until the 
population converges, hopefully to the optimum.

No derivatives are used.

Very few parameters to set.

A simple and apparently very reliable method.



DE: the algorithm

Start with NP randomly chosen solution vectors.

For each i in (1, …NP), form a ‘mutant vector’

vi = xr1+F.(xr2-xr3)

Where r1, r2, and r3 are three mutually distinct 
randomly drawn indices from (1, …NP), and 
also distinct from i, and 0<F<=2.



DE: forming the mutant vector
vi = xr1+F.(xr2-xr3)
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DE: From old points to mutants
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DE:  Crossover xi and vi to form 
the trial vector
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DE:  Crossover xi and vi to form 
the trial vector ui

xi = (xi1, xi2, xi3, xi4, xi5)
vi = (vi1, vi2, vi3, vi4, vi5)
ui = (__, __, __, __, __)
For each component of vector, draw a random number 
in U[0,1].  Call this randj.  Let 0<=CR<1 be a cutoff.  If 
randj<=CR, uij= vij, else uij= xij.

To ensure at least some crossover, one component of ui
is selected at random to be from vi . 



DE:  Crossover xi and vi to form 
the trial vector ui

xi = (xi1, xi2, xi3, xi4, xi5)
vi = (vi1, vi2, vi3, vi4, vi5)

So, for example, maybe we have

ui = (vi1, xi2, xi3, xi4, vi5)

Index 1 randomly
selected as definite 
crossover

rand5<=CR, so it 
crossed over too



DE: Selection

If the objective value COST(ui) is lower than COST(xi), then 
ui replaces xi in the next generation.  Otherwise, we keep xi.



Numerical verification
Much of the paper is devoted to trying the algorithm on many 
functions, and comparing the algorithm to representative 
algorithms of other classes.  These classes are:

•Annealing algorithms
•Evolutionary algorithms
•The method of stochastic differential equations

Summary of tests: DE is the only algorithm which consistently 
found the optimal solution, and often with fewer function 
evaluations than the other methods.



Numerical verification: example
The fifth De Jong function, or “Shekel’s Foxholes”

(See equation 10 on page 348 of the Differential Evolution
paper.)



The rest of the talk…

• Why is DE good?

• Variations of DE.

• How do we deal with constraints?

• An example from electricity load management.



Why is DE good?

•Simple vector subtraction to generate ‘random’ direction.
•More variation in population (because solution has not 
converged yet) leads to more varied search over solution 
space.

•∆ = (xr2-xr3) [discuss: size and direction]

•Annealing versus “self-annealing”.



Variations of DE

xr1 :  instead of random, could use best

(xr2-xr3) : instead of single difference, could 
use more vectors, for more variation. 

for example (xr2-xr3+xr4-xr5) 

Crossover: something besides bernoulli 
trials…



Dealing with constraints

• Penalty methods for ‘difficult’ constraints.
• Simple projection back to feasible set for 

l<=x<=u type constraints. 
• Or, random value U[l,u] (when, why?)



Example: Appliance Job Scheduling
Hourly electricity prices
(cents/kWh):

Power requirements for 
3 different jobs (kW):

Start time constraints.



Example: Appliance Job Scheduling
Objective:  find start times for each job which minimize cost.

Cost includes a charge on the maximum power used throughout 
the day.  This couples the problems!
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Convergence for different F

Other settings: CR=0.3, NP=6



Appliance Job Scheduling: Solution

Solution

Total energy profile

Electricity price over time



Wrap-up

•DE is widely used, easy to implement, extensions and variations 
available, but no convergence proofs.

•More information:
DE homepage:  practical advice (e.g. start with NP=10*D and 
CR=0.9, F=0.8), source codes, etc.
http://www.icsi.berkeley.edu/~storn/code.html

DE bibliography, 1995-2002.  Almost entirely DE applications.
http://www.lut.fi/~jlampine/debiblio.htm

http://www.icsi.berkeley.edu/~storn/code.html
http://www.lut.fi/~jlampine/debiblio.htm
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