
Polytopes, their diameter, and randomized simplex

Presentation by: Dan Stratila

Operations Research Center

Session 4: October 6, 2003

Based primarily on:

Gil Kalai. A subexponential randomized simplex algorithm (extended abstract).

In STOC. 1992. [Kal92a].

and on:

Gil Kalai. Linear programming, the simplex algorithm and simple polytopes.

Math. Programming (Ser. B), 1997. [Kal97].

Structure of the talk

1. Introduction to polytopes, linear programming, and the simplex method.

2. A few facts about polytopes.

3. Choosing the next pivot. Main result in this talk.

4. Subexponential randomized simplex algorithms.

5. Duality between two subexponential simplex algorithms.

6. The Hirsch conjecture, and applying randomized simplex to it.

7. Improving diameter results using an oracle for choosing pivots.

1

Polytopes and polyhedra

A polyhedron P ⊆ Rd is the intersection of finitely many halfspaces, or in matrix
notation P := {x ∈ Rd : Ax ≤ b}, where A ∈ Rn×d and b ∈ Rn . A polytope is a
bounded polyhedron.

Dimension of polyhedron P is dim(P) := dim(aff(P)), where aff(P) is the affine
hull of all points in P .

A polyhedron P ∈ Rd with dim(P) = k is often called a k-polyhedron. If
d = k, P called full-dimensional. (Most of the time we assume full-dimensional
d-polyhedra, not concerned much about the surrounding space.)

An inequality ax ≤ β, where a ∈ Rd and β ∈ R, is called valid if ax ≤ β for all
x ∈ P .

2

Vertices, edges, ..., facets

A face F of P is the intersection of P with a valid inequality ax ≤ β, i.e.
F := {x ∈ P : ax = β}.
Faces of dimension d − 1 are called facets, 1 ... edges, and 0 ... vertices. Vertices

are points, ⇔ basic feasible solutions (algebraic), or extreme points (linear cost).

Since 0x ≤ 0 is valid, P is a d-dimensional face of P . 0x ≤ 1 is valid too, so ∅ is
a face of P , and we define its dimension to be −1.

Some vertices are connected by edges, so we can define a graph G =
(V (G), E(G)), where V (G) = {v : v ∈ vert(P)} and E(G) = {(v, w) ∈
V (G)2 : ∃ edge E of P s.t. v ∈ E, w ∈ E}.
For unbounded polyhedra often a ∞ node is introduced in V (G), and we add
graph arcs (v, ∞) whenever v ∈ E where E is an unbounded edge of P .

3

Example of a 3-polytope

1

2

5

3

7

86

4

F

1

2

3

4

5

6

7

8

F

Figure 1: A 3-polytope (left) and its graph (right). Four vertices, three edges,
and facet F are shown in corresponding colors.

4

Linear programming and the simplex method

A linear programming problem max{cx : Ax ≤ b} is the problem of maximizing
a linear function over a polyhedron.

•	 If problem bounded (cost of feas. sol. finite), optimum can be achieved at
some vertex v.

If problem unbounded, can find edge E of P = {x ∈ Rd : Ax ≤ b} s.t. cx is•
unbounded on the edge.

•	 If problem bounded, vertex v is optimal ⇔ cv ≥ cw for all w adjacent to v
(for all (v, w) ∈ E(G)).

Geometrically, the simplex method starts at a vertex (b.f.s.) and moves from one
vertex to another along a cost-increasing edge (pivots) until it reaches an optimal
vertex (optimal b.f.s).

5

Vertices as intersections of facets

Any polytope can be represented by its facets P = {x ∈ Rd : Ax ≤ b}, or by its
vertices P = conv({v : v ∈ vert(P)}).
If vertices are given, then LP is trivial—just select the best one. Most of the
time, facets are given. Number of vert. exponential in number of facets makes
generating all vertices from the facets impractical.

Represent a vertex v as intersection of d facets. Any vertex is situated at the
intersection of at least d facets; any non-empty intersection of d facets yields a
vertex.

dWhen situated at a vertex v given by ∩i=1Fi, easy to find all adjacent vertices.
Remove each facet Fi, and intersect with all other facets not in {F1, . . . , Fd}.
Except when...

6

Degeneracy and simple polytopes

When a vertex is at the intersection of > d facets, procedure above may leave us
at the same vertex. Worse, sometimes need such changes before can move away
from a vertex in cost-increasing direction.

This is (geometric) degeneracy. In standard form degenerate vertices yield
degenerate b.f. solutions. Other “degenerate” b.f. solutions may appear because
of redundant constraints.

If all vertices of P belong to at most d facets (⇒ exactly d), P is called simple.
Simple polytopes correspond to non-degenerate LPs, and have many properties
[Zie95, Kal97].

We restrict ourselves to simple polytopes. Ok for two reasons: 1) any LP can
be suitably perturbed to become non-degenerate; 2) perturbation can be made
implicit in the algorithms.

7

A few facts about polytopes

Disclaimer: results not used or related to subexponential simplex pivot rules (main

result in this talk).

The f -vector: fk(P) :=# of k-faces of P .

Degrees: let degc(v) w.r.t. to some objective function c be the # of neighboring

vertices w with cw < cv.

The h-vector: hk,c(P) :=# of vertices of degree k w.r.t. objective c in P .

Note: there is always one vertex of degree d, and one of degree 0.

Property: hk,c(P) = hk(P), independent of c.

8

hk,c(P) = hk(P), proof (1/2)

Proof. Count p := |{(F, v) : F is a k-face of P , v is max. on F }, in two ways.

Pick facets. Because c in general position ⇒ v unique for each F , hence
p = fk(P).

On the other hand, pick a vertex v, and assume degc(v) = r. Let T = {(v, w) :
cv > cw}, by definition T = r.| |
For simple polytopes, each vertex v has d adjacent edges, and any k of them
define a k-face F that includes v.

�
T

�
So, # of k-facets that contain v as local maximum is

|
k
| =

�
r
�

.

k

9

hk,c(P) = hk(P), proof (2/2)

Summing over all v ∈ vert(P), we obtain fk(P) =
�d

�
r
�

. r=k hr,c(P)
k

Equations linearly independent in hr,c. This completely determines hr,c(P) in
terms of fk(P). But fk(P) independent of c, so same true for hr(P).

10

The Euler Formula and Dehn-Sommerville Relations

r=k(−1)r−kfr(P) .We can expess hk(P) =
�d

�
r
�

k

We know that h0(P) = hd(P) = 1, hence f0(P)−f1(P)+ · · ·+(−1)dfd(P) = 1,
d+ (−1)d−1fd−1(P) = 1− (−1) .or f0(P)− f1(P) + · · ·

In 3 dimensions, V − E + F = 2.

Back to hk,c(P), note that if degc(v) = k then deg−c(v) = d − k.

Because of independence of c, we obtain the Dehn-Sommerville Relations:
hk(P) = hd−k(P).

11

Cyclic polytopes and the upper bound theorem

A cyclic d-polytope with n vertices is defined by n scalars t1, . . . , tn as

conv({(ti, t2

i , . . . , ti
d) : i = 1, d}). Can use other curves too.

All cyclic d-polytopes with n vertices have same structure, denote by C(d, n).

The polar C∗(d, n) := {x ∈ (Rd)∗ : xv ≤ 1,∀v ∈ C(d, n)} is a simple polytope.

Property: C(d, n) has the maximum number of k-facets for any polytope with

n vertices.

The polar C∗(d, n) has the maximum number of k-facets for any polytope with
n facets (the face lattice).

Exact expression for fk−1 elaborate, but a simple one is fk−1 =

�min{d,k}

�
d− i

�

hi(P). For more interesting details, see [Zie95]. i=0 k − i

12

Abstract objective functions and the combinatorial structure

An abstract objective function assigns a value to every vertex of a simple polytope
P , s.t. every non-empty face F of P has a unique local maximum vertex.

AOFs are gen. of linear objective functions. Most results here apply.

The combinatorial structure of a polytope is all the information on facet inclusion,

e.g. all vertices, all edges and the vertices they are composed of, all 3-facets and
their composition, etc.

Lemma: Given graph G(P) of simple polytope P , connected subgraph H =
(V (H), E(H)) with k vertices defines a k-face if and only if ∃ AOF s.t. all
vertices in V (H) come before all vertices in V (G(P)) \ V (H).

Property: The combinatorial structure of any simple polytope is determined by
its graph.

13

Main result in this talk—context

In the simplex algorithm we often make choices on which vertex to move to next.
Criteria for choosing the next vertex are called pivot rules.

In the early days, “believed” simple rules guarantee a polynomial number of
vertices in path. Klee and Minty [KM72] have shown exponential behaviour.

After that, not known even if LP can be solved in polynomial time at all, until
[Kha79]. But still,

•	 Finding a pivot rule (deterministic or randomized) that would yield a polynomial
number of vertex changes—open since simplex introduced.

For some f(n), exponential: f(n) ∈ Ω(kn), k > 1. Polynomial: f(n) ∈ O(nk)
for some fixed k ≥ 1. Subexponential f(n k) for any fixed k ≥ 1 and
f(n) �∈ Ω(kn) for any fixed k > 1.

) �∈ O(n

14

Main result in this talk

Shortly before a different technique in [SW92], shorty aftewards a subexponential
analysis for it in [MSW96].

•	 The first randomized pivot rule that yields subexponential expected path length
(presented from [Kal92a, Kal97]).

Expectation over internal random choices of algorithm; applicable to all LP
instances.

Immediate application to diameter of polytopes and the Hirsch conjecture (more
about diameters and the Hirsch conjecture later).

15

Algorithm 1

Simplest randomization (Dantzig, others): next vertex random with equal prob.
among neighboring cost-increasing vertices. Hard to analyize in general; Gärtner,
Henk and Ziegler show quadratic lower bounds on Klee-Minty cubes.

Reminder: P Given P = {x ∈ Rd : Ax ≤ b}, so in LP terms: d = # of variables,
n = # of constraints. Also given c ∈ Rd .

A1-1 (parameter r, start vertex v):

1. Find vertices on r facets F1, F2, . . . , Fr s.t. ∀Fi, cv < max{cx : x ∈ Fi}.
2. Choose a facet Fk at random from F1, F2, . . . , Fr with equal probability.
3. Solve max{cx : x ∈ Fk} recursively. Let the optimum vertex be w.
4. Finish solving the problem from w recursively.

How is this a simplex algorithm?

16

A1-1: Implementation of step 1

For step 1, easy to find the first d facets. For the rest r − d facets, let
k := d, z := v and proceed as follows:

1. Solve an LP from z with only the k facets recursively. Let result be z.

2. If z feasible for original problem, optimum found, A1-1 terminates.

3. Otherwise, first edge E on path that leaves P gives new facet F . Let z be the
point in E ∩ F . If r facets, stop; otherwise go to step 1.

Up to now we are tracing a path along the vertices of the original problem.

17

A1-1: Implementation of steps 2 and 3

First, note that when solving max{cx : x ∈ Fk}, tracing a path along vertices of
Fk. This is also a path along vertices of P , since we are working with Fk in its
dimension.

If k = r or k = r − 1, then last vertex ∈ Fk, can continue our path in step 3.

But if k < r − 1, then backtracking from the last vertex found when discovered.
Not “honest” simplex.

Easy to fix. Since facet Fk is chosen uniformly among facets F1, . . . , Fr, this
can be done by choosing uniformly among Fi1, . . . , Fir , where i1, . . . , ir order in
which facets encountered by step 1.

So, generate random k before step 1, and stop once reached k-th facet (Kalai
also offers another workaround).

18

A1-1: Implementation of step 4

A facet F is active w.r.t. a vertex v if ∃w ∈ vert(F) s.t. cw > cv.

Apply algorithm recursively from w using only those facets which are active. At
most n− 1 such facets (Fk from step 3 cannot be active).

Complexity analysis

Let f1(P, c) := E[# of pivots when solving max{cx : x ∈ P} by A1]. Let
f1(d, n) := max

�
f1({x ∈ Rd : Ax ≤ b}, c) : A ∈ Rn×d, c ∈ Rd, b ∈ Rn

�
.

First part of analysis: probabilistic reasoning to obtain a recurrence relation on
f1(d, n).

Second part: solving the recurrence (using generating functions).

19

A1-1: Analysis of step 1

It takes f1(d, i) to solve an LP in d variables with i facets using A1-1. So step 1
takes at most

�r
i=1 f1(d, i).

In step 2, note that there is at least one vertex in the path for each random
number generated.

In step 3, the expected complexity is f1(d− 1, n− 1).

After step 3, we only need to consider the active facets w.r.t. w. How many?
Assume facets F1, . . . , Fr are ordered according to their top vertex. Then selecting
facet i ⇒ at most n− i− 1 active facets w.r.t. w.

So with probability 1 we will have n− i− 1 active facets, for i = 1, 2, . . . , r. r

Rec.: f1(d, n) = 2
�r

f1(d, i)+f1(d− 1, n− 1)+ 1 �n−1 �l
f1(d, n− i).i=d r n−r−1 i=d

20

(The real) Algorithm 1

Before analyzing the recurrence, we improve A1-1.

1A1 (parameter c > 2, start vertex v):

1. Starting from v, find vertices on r active facets F1, F2, . . . , Fr.
2. Choose a facet Fk at random from F1, F2, . . . , Fr with equal probability.
3. Solve max{cx : x ∈ Fk} recursively. Let the optimum vertex be w.
4. Let l := |{F : F active w.r.t. If l > (1 − c)n then let v := w and go to w}|.

step 1; otherwise, finish solving recursively from w.

Let r := max
�

n
2 , d

�
. What is probability of not returning to step 1? If r = n

easily geometric with ratio = P (no return) = P (l < (1 − c)n) = 1 − c.

In general, analysis more complicated.

21

�

A1: the recurrence

2

r�
 1 1

r�

f1(d, n) ≤
 f1(d, i) + f (d − 1, n − 1) + f1(d, n − i)i.

1 − c 1 − c (1 − c)n
i=d i=�cn�

(1)
�

d + logb n1Taking b = 1−c, we get a bound of f1(d, n) ≤ bd(6n)logb n
logb n

.

1Taking c = 1 − , we obtain √
d

f1(d, n) ≤ n 16
√

d . (2)

22

Algorithm 2

Delete step 4, repeat steps 1–3 until step 1 detects an optimal vertex. Equivalent
to setting c := 1 in 1.

A2 (start vertex v):

1. Starting from	 v, find vertices on r active facets F1, F2, . . . , Fr. If unable to

find r distinct active facets ⇒ opt. vertex found.
2. Choose a facet Fk at random from F1, F2, . . . , Fr with equal probability.
3. Solve max{cx : x ∈ Fk} recursively. Let the optimum vertex be w.
4. Delete inactive facets, set v := w, and go to step 1.

Recurrence is:

f2(d, n) ≤ f2(d− 1, n− 1) +
n/2�

g(d, i) +

2

n/2�

n
i=d	 i=1

g(d, n− i). (3)

23

A2: the bounds

d
log dBy solving the recurrences, we get f2(d, Kd) ≤ 2C

√
Kd , and f2(d, n) ≤ n

C
�

.

When co-dimension (m := n − d) is small the following bound is very useful:
2C
√

m log d .

Next: the interesting A3.

24

Algorithm 3

A3 (start vertex v):

1. From d facets containing v, select a facet F0 at random, with equal probability.
2. Apply A3 to F0 recursively, and let w be the optimum.
3. Set v := w and go to step 1.

Simple! This algorithm is the dual of the algorithm discovered by Sharir and
Welzl [SW92] (more about this later).

For now, note that in a simple polytope, there can be at most 1 non-active facet
adjacent to any vertex v, unless v is optimal.

25

A3: the recursion

1First, if all facets active, with probability d the chosen facet yields n − i active
facets at step 3, for i = 1, . . . , d.

1Second, if one facet inactive, with probability d−1 the chosen facet yields n − i
facets at step 3, for i = 1, . . . , d− 1.

Second alternative is worse, so we factor it in and obtain recursion f3(d, n) ≤
f(d− 1, n− 1) + 1 �d−1

f(d, n− i).i=1d−1

This yields bound f3(d, n) ≤ eC
√

n log d . A4, which we do not present now, gives
eC
√

d log n, better, like A2.

26

Subexponential behaviour

2 4 6 8 10 12 14

500

1000

1500

2000

2500

200 400 600 800 1000 1200

5·108

1·109

1.5·109

2·109

Figure 2: Asymptotic behaviour of the exponential 2d , the polynomial d3 and the
subexponential 2

√
d .

27

The duality of A4 and the Sharir-Welzl algorithm

Following [Gol95], we show what the Sharir-Welzl algorithm (Algorithm B)
[MSW96] does to the polytope of the dual LP. Reminder: algorithm B was called
BasisLP in the second part of Session 3.

Unlike before, we’ll use lots of traditional LP terminology. Let H be a set of
constraints, and B a set of constraints that define a basis.

B (set of constraints H, basis C with C ⊆ H):

1. Begin at C.
2. Choose random constraint h ∈ H \ C
3. Solve LP recursively with constraints H \ {h}, from C. Let result be B.

4. If B violates h, then form new basis C � := basis(B, h); otherwise optimum

found.
5. Let C := C � and go to step 1.

28

The dual problems

Primal (we run B on this problem):

max{cx : Ax ≤ b}. (4)

Dual (we see what B does to this problem):

min{yb : y ≥ 0, yA = c}. (5)

We will imagine the dual problem in the yA = c space, so only the inequality
constraints y ≥ 0 define facets; yA = c is simply an affine transformation of the
space.

29

The correspondence, up to step 3

C	 := initial feasible basis � C := initial feasible vertex. (Not true.)

Choosing random h ∈ H \ C � choosing random facet yh ≥ 0 that contains C:

•	 We know, by complementary slackness, that un-tight constraints in the primal
correspond to 0-level variable components in the dual.
Only the yi ≥ 0 constraints define facets in the dual polytope. •
Active constraint at a vertex C defines a facet that constains C.•

Solve recursively the LP with constrains H \h starting from C � solve recursively
LP on facet yh = 0 starting from C.

If we remove a constraint in the primal, this is the same as requiring yh = 0 •
in the dual.

30

The correspondence, step 4

In both cases we obtain a new basis (� vertex) B.

If B violates h � B not optimal: infeasible primal solutions correspond to
suboptimal dual solutions.

C � := basis(B, h) is a pivot operation � C � := move away along an unique edge
from yh = 0. But, there is no “move along an edge” in A3!

Slight adjustment to A3, in order to achieve perfect duality: in step 1, pick a
random facet among d active facets.

After we found optimum w on facet F0, this facet is not active (since w optimum
on it). Moreover, this facet is defined by d − 1 of the edges at w (in a simple
polytope, every d − 1 edges at a vertex define a facet, and conversely).

31

The correspondence, steps 4 and 5

Hence only one remaining edge can be cost-improving ⇒ any simplex algorithm
will take it. So, our algorithm takes it when it tries to find the d-th facet.

But this implies that the choice of d facets available to A3 is exactly the same as
the choice of d facets available after moving along the unique edge.

In steps 5 and 1 this yields the same choice of un-tight constraints in the primal!

So, a variant of the Sharir-Welzl algorithm B when followed on the dual polytope
is exactly the same as the (slightly modified) Kalai algorithm A3.

32

The Hirsch conjecture

The diameter δ(G(P)) of a polytope is the diameter of its graph, i.e. the longest
shortest path between any pair (v, w) of vertices. Denote by δ(�G(P)) the longest
shortest path in the cost-function directed graph of P .

Let Δ(d, n) := max{δ(G(P)) : P is a d-polytope with n facets }. Let H(d, n) :=
max{δ(G(P)) : P is a d-polytope with n facets, c is any cost function }.
Clearly, the simplex algorithm cannot guarantee a better performance on P than
δ(G(P)). Moreover, Δ(d, n) ≤ H(d, n).

Conjecture (Hirsch, [Dan63]): Δ(P) ≤ n − d.

False for unbounded polyhedra [KW67]. Lower bound of Δ(d, n) ≥ n− d+ �d/5�.
Still best lower bound!

33

Status of Hirsch conjecture for polytopes

Still open!

Exponential bound Δ(d, n) ≤ n2d−3 [Larman, 1970].

Until recently (w.r.t. 1992) no sub-exponential bound known.

Bounds of n2 log d+3 and nlog d+1 in [Kal92b, KK92] respectively.

How randomized pivot rules affect the Hirsch conjecture? A randomized simplex

algorithm gives only hope that a deterministic algorithm with the same complexity

may be devised.

But, because E[...] is over choices, at least one of these choices (even if we don’t

know it), yields a path of length less that E[...].

34

A friendly oracle

So all our bounds on the number of simplex pivots, immediately apply to H(d, n)
(since simplex takes only monotone paths) and hence to Δ(d, n).

In algorithms A1–A4 we spend at most O(d2n) for each pivot, and generate at
most 1 random number per pivot.

What if we allow much more time per pivot? Result will still apply to the Hirsch
conjecture. Do not want algorithms such as “construct the graph, find the
shortest path, then parse it”, since analysis is equivalent to Hirsch conjecture.

But, can still make use of a more powerful oracle that makes choices at each
pivot step. Works from within Algorithm 4.

35

Algorithm 4

A4 (start vertex v):

1. From	 the active facets w.r.t v, select a facet F0 at random, with equal
probability.

2. Find vertices recursively until reached F0, or until optimum found.
3. Solve recursively on F0. Let result be v.
4.	 Go to step 1.

As mentioned, bound of eC
√

d log n .

Now instead of selecting F0 at random, order all facets in increasing order
F1, . . . , Fn of max{cx : x ∈ Fi}. Select F0 s.t. max{x : x ∈ F0} above the
median (i > �n/2� in the ordering).

Let f4(d, n) be the number of steps using the oracle.

36

A4: the recursion

At most f4(d, n/2) pivots for step 2. Pivots from step 4 (counting everything
that happens) is again f4(d, n/2). Clearly, step 3 takes f4(d − 1, n − 1). Hence:

f4(d, n) ≤ 2f4(d, �n/2�) + f4(d − 1, n − 1) + 1. (6)

To solve this, let φ(d, t) := 2tf4(d, 2t). Then, from (6), we obtain φ(d, t) ≤
φ(d − 1, t) + φ(d, t − 1).

By simple combinatorial reasoning (counting all paths to the bottom), this yields
�
d + t

� �
log n + d

�
φ(d, t) ≤ . So f4(d, n) ≤ n

d log n
.

�
a + b

�

Finally, by combinatorics
a

≤ ab (or ba), we obtain f4(d, n) ≤ nlog d+1 .

37

How smart the oracle?

Not too smart:

1. Solve max{cx : x ∈ Fi} for each facet Fi using some polynomial LP algorithm.

2. Rank all values.

Only needs to be done once per instance. Hence bound nlog d+1 can be achieved

by a polynomial-pivot-time deterministic simplex algorithm!

Not combinatorial; overkill.

38

References

[Dan63] George B. Dantzig. Linear programming and extensions. Princeton University Press, Princeton, N.J.,
1963.

[Gol95] Michael Goldwasser. A survey of linear programming in randomized subexponential time. ACM SIGACT
News, 26(2):96–104, 1995.

[Kal92a] Gil Kalai. A subexponential randomized simplex algorithm (extended abstract). In Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing, pages 475–482. ACM Press, 1992.

[Kal92b] Gil Kalai. Upper bounds for the diameter and height of graphs of convex polyhedra. Discrete Comput.
Geom., 8(4):363–372, 1992.

[Kal97] Gil Kalai. Linear programming, the simplex algorithm and simple polytopes. Math. Programming, 79(1-3,
Ser. B):217–233, 1997.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR, 244(5):1093–
1096, 1979.

[KK92] Gil Kalai and Daniel J. Kleitman. A quasi-polynomial bound for the diameter of graphs of polyhedra.
Bull. Amer. Math. Soc. (N.S.), 26(2):315–316, 1992.

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm? In Inequalities, III (Proc. Third
Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin),
pages 159–175. Academic Press, New York, 1972.

[KW67] Victor Klee and David W. Walkup. The d-step conjecture for polyhedra of dimension d < 6. Acta Math.,
117:53–78, 1967.

39

[MSW96] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica,
16(4-5):498–516, 1996.

[SW92] Micha Sharir and Emo Welzl. A combinatorial bound for linear programming and related problems. In
STACS 92 (Cachan, 1992), volume 577 of Lecture Notes in Comput. Sci., pages 569–579. Springer, Berlin,
1992.

[Zie95] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1995.

40

	Title Slide
	Structure of the talk
	Introduction to polytopes, LP, and simplex
	Vertices, edges, ..., facets
	Example of a 3-polytope
	LP and the simplex method
	Vertices as intersections of facets
	Degeneracy and simple polytopes

	A few facts about polytopes
	h_{k,c}(P) = h_k(P), proof (1/2)
	h_{k,c}(P) = h_k(P), proof (2/2)
	The Euler Formula and Dehn-Sommerville Relations
	Cyclic polytopes and the upper bound theorem
	Abstract objective functions and the combinatorial structure

	Main result in this talk---context
	Main result in this talk

	Algorithm 1
	A1-1: Implementation of step 1
	A1-1: Implementation of steps 2 and 3
	A1-1: Implementation of step 4
	A1-1: Analysis of step 1
	(The real) Algorithm 1
	A1: the recurrence

	Algorithm 2
	Algorithm 2: the bounds

	Algorithm 3
	A3: the recursion

	Subexponential behaviour
	The duality of A4 and the Sharir-Welzl algorithm
	The dual problems
	The correspondence, up to step 3
	The correspondence, step 4
	The correspondence, steps 4 and 5

	The Hirsch conjecture
	Status of Hirsch conjecture for polytopes
	A friendly oracle
	Algorithm 4
	A4: the recursion
	How smart the oracle?

	References

