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Recap of Past Sessions


•	 LP 
–	 Kalai (1992, 1997) 

∗	 use randomized pivot rules 
–	 Motwani and Raghavan (1995), Clarkson (1998, 1995) 

∗	 solve on a random subset of constraints, recursively 
–	 Dunagan and Vempala (2003): LP Feasibility (Ax ≥ 0, 0 �=	0) 

∗	 Generate random vectors and test for feasibility 
∗	 If not, try moving in deterministic (w.r.t. random vector already selected) 
direction to achieve feasibility 

•	 NLP 
–	 Storn and Price (1997): Unconstrained NLP 

∗	 Heuristic 
∗	 Select random subsets of solution population vectors 
∗	 Perform addition, subtraction, component swapping and test for obj func 
improvement 
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Motivation


What about provably convergent algorithms for constrained NLPs? 

•	 Random search techniques first proposed in the 1950s 
•	 pre-1981 proofs of convergence were highly specific and involved 

•	 Solis and Wets, 1981: Can we give more general sufficient conditions for convergence, 
unifying the past results in the literature? 

•	 Solis and Wets paper interesting more from a unifying theoretical standpoint 
•	 Computational results of the paper relatively unimpressive 
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Outline


• Part I: Solis and Wets paper 
– Motivation for using random search 
– Appropriate goals of random search algorithms 
– Conceptual Algorithm encompassing several concrete examples 
– Sufficient conditions for global search convergence, and theorem 
– Local search methods and sufficient conditions for convergence, and theorem 
– Defining stopping criteria 
– Some computational results 

• Part II: Intro to Sampling Methods 
– Traditional Methods 
– Hit-and-run algorithm 
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Why Use Random Search Techniques?


Let f : Rn → R, S ⊆ Rn . 

(P) min f (x) 

s.t. x ∈ S 

• Function characteristics difficult to compute (e.g. gradients, etc.) 
• Function is “bumpy” 
• Need global minimum, but there are lots of local minima 
• Limited computer memory 
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What is an Appropriate Goal?


•	 Problems 
–	 Global min may not exist 
–	 Finding min may require exhaustive examination (e.g. min occurs at point at 
which f singularly discontinuous) 

•	 Response 
Definition 1. α is the Essential Infimum of f on S iff 

α =  inf  {t | v(x ∈ S | f(x) < t) > 0} , 

where v denotes n-dimensional volume or Lebesgue measure. Optimality region 
for P is given by (

{x	∈ S | f(x) < α+ ε} , α finite 
=Rε,M {x	∈ S | f(x) < −M} , α = −∞, 

for a given “big” M > 0 
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What is Random Search?


Conceptual Algorithm: 

1. Initialize: Find x0 ∈ S. Set  k := 0 

2. Generate ξk ∈ Rn (random) from distribution µk 
k+13. Set x = D(xk, ξk). Choose  µk+1. Set  k := k + 1.  Go to step 1.  

“ ˛ ” 
k ˛ 0 1 k−1 

µk(A) = P x ∈ A ˛ x , x , . . . , x 

This captures both 

• Local search =⇒ supp(µk) is bounded and v(S ∩ supp(µk)) < v(S) 

• Global search =⇒ supp(µk) is such that v(S ∩ supp(µk)) = v(S) 
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Sufficient Conditions for Convergence


˘ 
(H1) D s.t. f(xk) 

¯∞ 
nonincreasing

k=0 

f(D(x, ξ)) ≤ f(x) 

ξ ∈ S =⇒ f(D(x, ξ)) ≤ min {f(x), f(ξ)} 

(H2) Zero probability of repeatedly missing any positive-volume subset of S. 

∞ Y 
∀A ⊆ S s.t. v(A) > 0, (1 − µk(A)) = 0 

k=0 

i.e. sampling strategy given by µk cannot consistently ignore a part of S with 
positive volume (Global search methods satisfy (H2)) 
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Example Satisfying (H1) and (H2), I


Due to Gaviano [2].  

k k k
D(x , ξ )  =  (1  − λk)x + λkξ

k where h i 
k k k k

λk =  arg  min  f ((1 − λ)x + λξ ) | (1 − λ)x + λξ ∈ S 
λ∈[0,1] 

k µk unif on n-dim sphere with center x and r ≥ 2diam(S). 

Why? ˘ • (H1) satisfied since f (xk) 
¯∞ 

nonincreasing by construction 
k=0 

• (H2) satisfied because sphere contains S 
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Example Satisfying (H1) and (H2), II


Due to Baba et al. [1]. 
(

kξk, ξk ∈ S and f(ξk) < f(x )k k
D(x , ξ ) = kx , o.w. 

k 
µk ∼ N (x , I) 

Why? ˘ • (H1) satisfied since f(xk) 
¯∞ 

nonincreasing by construction 
k=0 

k • (H2) satisfied because S contained in support of N (x , I) 
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Global Search Convergence Theorem


 ̆
k
¯∞

Theorem 1. Suppose f measurable, S ⊆ Rn measurable, (H1), (H2), and x
k=0 

generated by the algorithm. Then “ ” 
k

lim P x ∈ Rε,M = 1 
k→∞


k
 ∈ Rε,M =⇒ x� �Proof. By (H1), x � ∈ Rε,M , ∀� < k  

“ ” k−1 Y ` ´k
P x ∈ S\Rε,M ≤ 1 − µ�(Rε,M ) 

�=0 

“ ” “ ” k−1 Y  ̀ ´k k
P x ∈ Rε,M = 1  − P x ∈ S\Rε,M ≥ 1 − 1 − µ�(Rε,M )


�=0


“ ” k−1 Y  ̀ ´k
1 ≥ lim P x ∈ Rε,M ≥ 1 − lim 1 − µ�(Rε,M ) = 1, 

k→∞ k→∞ 
�=0 

where last equality follows from (H2). 
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Local Search Methods


•	 Easy to find examples for which the algorithm will get trapped at local minimum 

•	 Drastic sufficient conditions ensure convergence to optimality region, but are very 
difficult to verify 

For instance 

(H3) ∀x0 ∈ S ˘ 
L0 = x ∈ S | f (x) ≤ f (x0) 

¯ 
is compact and 

∃γ >  0 and η ∈ (0, 1] (possibly depending on x0) s.t., ∀k and ∀x ∈ L0, `ˆ ˜ ˆ	 ˜´ 
µk D(x, ξ) ∈ Rε,M ∪ dist(D(x, ξ), Rε,M ) < dist(x, Rε,M ) − γ ≥ η. 

If	f and S are “nice,” local search methods demonstrate better convergence behavior. 
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Example Satisfying (H3), I


• int(S) �= ∅ 

• ∀α ∈ R, S ∩ {x | f(x) ≤ α} convex and compact 
Happens whenever f quasi-convex and either S compact or f has bounded level 
sets 

• ξk chosen via uniform distribution on hypersphere with center xk and radius ρk 
0 1 • ρk is a function of x , x , . . . ,  xk−1 and ξ1, . . . , ξk−1 such that ρ = infk ρk > 0 

• (
ξk, ξk ∈ Sk k

D(x , ξ ) = kx , o.w. 

Proof. L0 compact convex since level sets are. 
Rε,M has nonempty interior since S does. 
∴ can draw ball contained in interior of Rε,M . 

v(region I) Now take γ = ρ and η = > 02 v(hypersphere with radius ρ) 
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Example Satisfying (H3)
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v(region II) > v(region I) = η. v(hypersphere with radius ρk) v(hypersphere with radius ρ) 
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Local Search Convergence Theorem, I


Theorem 2. Suppose f is a measurable function, S ⊆ Rn is a measurable, and (H1) ˘ 
k
¯∞

and (H3) are satisfied. Let x be a sequence generated by the algorithm. Then, 
k=0 “ ” 

k
lim P x ∈ Rε,M = 1. 
k→∞ 

Proof. Let x0 be the initial iterate used by the algorithm. By (H1), all future iterates 
in L0 ⊇ Rε,M . L0 is compact. Therefore ∃p ∈ Z s.t. γp > diam(L0). “ ” “ ” P x�+p ∈ Rε,M, x �∈ Rε,M 

P x �+p ∈ Rε,M | x � = ` 
́∈ Rε,M 
P x� �∈ Rε,M “ ” 

≥ P x �+p ∈ Rε,M, x �∈ Rε,M “ 
≥ P x �∈ Rε,M, dist(x k, Rε,M ) ≤ γ(p − (k − �)), 

k = �,  . . . , �  + p) 

≥ η
p by repeated Bayes rule and (H3) 
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Local Search Convergence Theorem, II


` 
xkp ´ 

Claim: P �∈ Rε,M ≤ (1 − ηp)k , ∀k ∈ {1, 2, . . .  } 

By induction “ ” ` 
(k = 1)  P xp ∈ Rε,M ́

 ≥ P xp ∈ Rε,M, x 0 �∈ Rε,M ≥ ηp 

“ ” “ ” “ ” 
∈ Rε,M | x(k−1)p ∈ Rε,M P x(k−1)pxkp ∈ Rε,M = P xkp � � �(Genl k) P � ∈ Rε,M h “ ”i  ̀

x(k−1)p ∈ Rε,M 1 − η
p´k−1≤ 1 − P xkp ∈ Rε,M | �

≤ 
` 
1 − η

p´ `  
1 − η

p´k−1 

“ ” “ ” 
∴ P xkp+� ∈ Rε,M ≥ P xkp ∈ Rε,M ≥ 1 − 

` 
1 − η

p´k
, � = 0, 1, . . . , p  − 1 
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Stopping Criteria


˘	
k
¯∞ k•	 So far, we gave a conceptual method for generating x such that f (x ) → 
k=0 

essential inf plus buffer 
•	 In practice, need stopping criterion 

•	 Easy to give stopping criterion if have LB on µk(Rε,M ) (unrealistic) 
•	 How to do this without knowing a priori essential inf or Rε,M ? 
•	 Has been shown that even if S compact and convex and f ∈ C2, each step of alg 
leaves unsampled square region of nonzero measure, over which f can be redefined 
so that global min is in unsampled region 

•	 “search for a good stopping criterion seems doomed to fail” 
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Rates of Convergence


•	 Measured by distributional characteristics of number of iters or function evals 
required to reach essential inf (e.g. mean) 

•	 Solis and Wets tested 3 versions of the conceptual alg (1 local search, 2 global 
search) on various problems (constrained and unconstrained) 

•	 They report results only for 

min x x 
x∈Rn 

3with stopping criterion ‖xk‖ ≤ 10−

•	 Found that mean number of function evals required ∝ n. 
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Conclusion and Summary of Part I


• Why use random search techniques? 
• How to handle pathological cases? (essential infimum, optimality region) 
• Conceptual Algorithm unifies past examples in the literature 
• Global and local search methods 
• Sufficient conditions for convergence and theorems 
• Issue of stopping criteria 
• Computational results 
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Part II: Traditional Sampling Methods


•	 Transformation method 
–	 easier to generate Y than X, but well-behaved transformation between the two 

•	 Acceptance-rejection method 
–	 Generate a RV and subject it to a test (based on a second RV) in order to 
determine acceptance 

•	 Markov-regression 
–	 Generate random vector component-wise, using marginal distributions w.r.t. 
components generated already 

Impractical because complexity increases rapidly with dimension. 
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Part II: Approximate Sampling Methods


•	 Perform better computationally (efficient) 
•	 generates a sequence of points, whose limiting distribution is equal to target 
distribution 

Hit-and-Run: Generate random point in S, a bounded open subset of Rd, according to 
some target distribution π. 

1. Initialize: select starting point x0 ∈ S. n := 0. 
2. Randomly generate direction θn in Rd, according to distribution ν 
(corresponds to randomly generating a point on a unit sphere). 

n3. Randomly select step size from λn ∈ {λ | x + λθn ∈ S} according to distribution 
L(xn, θn)


n+1 n
4. Set x := x + λnθ
n . n := n + 1. Repeat. 

e.g. generate point according to uniform distribution on S: use all uniform distributions 
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Further Reading
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