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• Pure Random Search versus Pure Adaptive Search

• Relationship to Solis and Wetz (1981)

• Distribution of improvement in objective function value

• Performance bounds
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Global Optimization Problem

• Problem (P):
min
x∈S

f(x)

where x ∈ Rn, S is convex, compact subset of Rn, and f continuous over S

• f satisfies Lipschitz condition, i.e., |f(x)− f(y)| ≤ kf‖x− y‖, ∀x, y ∈ S

• x∗ = arg minx∈S f(x)

• y∗ = f(x∗) = minx∈S f(x)

• y∗ = maxx∈S f(x)
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Pure Random Search (PRS)

• Generate sequence of independent, uniformly distributed points

X1, X2, . . . ,

in the feasible region S. Denote their associated objective function values by

Y1 = f(X1), Y2 = f(X2), . . .

• When stopping criterion met, best point generated so far is taken as
approximation to true optimal solution
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This presentation is based on: Zabinsky, Zelda B., and Robert L. Smith. Pure Adaptive Search
in Global Optimization. Mathematical Programming 55, 1992, pp. 323-338.



Pure Adaptive Search (PAS)

Step 0. Set k = 0, and S0 = S

Step 1. Generate Xk+1 uniformly distributed in Sk, and set Wk+1 = f(Xk+1)

Step 2. If stopping criterion met, STOP. Otherwise, set

Sk+1 = {x : x ∈ S and f(x) < Wk+1},

Increment k, Goto Step 1.
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Solis and Wetz

• Give sufficient conditions for convergence of random global search methods

• Experimental support for linear relation between function evaluations and
dimension

• PAS satisfies H1 since objective function values are increasing

• PAS satisfies H2 since the optimal solution is always in the restricted feasible
region
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Importance of Strict Improvement

• What if consecutive points were allowed to have equal objective function
values?

• Let S be a unit hypersphere, with f(x) = 1 on S except for a depression on a
hypersphere of radius ε, Sε, where f(x) drops to value 0 at the center of the
ε-ball Sε

• Then, P (random point is in Sε) = volume(Sε)/volume(S) = εn

• Thus, PAS could have expected number of iterations that is exponential in
dimension (if strict improvement were not enforced)
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Some Notation

• Let p(y) = P (Yk ≤ y), for k = 1, 2, . . . and y∗ ≤ y ≤ y∗

• For PRS,
p(y) = v(S(y))/v(S),

where S(y) = {x : x ∈ S and f(x) ≤ y} and v(·) is Lebesgue measure

• Note that for PAS,

P (Wk+1 ≤ y|Wk = z) = v(S(y))/v(S(z)) = p(y)/p(z),

for k = 1, 2, . . . and y∗ ≤ y ≤ z ≤ y∗
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Connection Between PAS and PRS

Definition. Epoch i is said to be a record of the sequence {Yk, k = 0, 1, 2, . . .} if
Yi < min(Y0, Y1, . . . , Yi−1). The corresponding value Yi is called a record value.

Lemma 1. For the global optimization problem (P), the stochastic process
{Wk, k = 0, 1, 2, . . .} ∼ {YR(k), k = 0, 1, 2, . . .}, where R(k) is the kth record of
the sequence {Yk, k = 0, 1, 2, . . .}. In particular,

P (Wk ≤ y) = P (YR(k) ≤ y), for k = 0, 1, 2, . . . , and y∗ ≤ y ≤ y∗
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Proof of Lemma 1

Proof. First, we show that the conditional distributions are equal.

P (YR(k+1) ≤ y|YR(k) = x) = P (YR(k)+1 ≤ y|YR(k) = x)
+P (YR(k)+2 ≤ y, YR(k)+1 ≥ x|YR(k) = x) + · · ·

= P (YR(k)+1 ≤ y)
+P (YR(k)+2 ≤ y)P (YR(k)+1 ≥ x) + · · ·

= P (Y1 ≤ y)
∑∞

i=0 P (Y1 ≥ x)i

= P (Y1≤y)
1−P (Y1≥x)

= v(S(y))/v(S(x))

= P (Wk+1 ≤ y|Wk = x).
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Next, we use induction to show that the unconditional distributions are equal.
By definition, R(0) = 0 and Y0 = W0 = y∗, thus YR(0) = W0.

For the base case k = 1,

P (YR(1) ≤ y) = P (YR(1) ≤ y|Y0 = y∗)

= P (W1 ≤ y|W0 = y∗)

= P (W1 ≤ y), for all y∗ ≤ y ≤ y∗

Thus, YR(1) ∼ W1.
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For k > 1, suppose that YR(i) ∼ Wi for i = 1, 2, . . . , k. Then,

P (YR(k+1) ≤ y) = E[P (YR(k+1) ≤ y|YR(k))]

=
∫ x

0
P (YR(k+1) ≤ y|YR(k) = x) dFYR(k)

(x)

=
∫ x

0
P (Wk+1 ≤ y|Wk = x) dFWk

(x)

= E[P (Wk+1 ≤ y|Wk)]

= P (Wk ≤ y), for all y∗ ≤ y ≤ y∗

Thus, YR(k+1) ∼ Wk+1.

Finally, since the two sequences are equal in conditional and marginal
distribution, they are equal in joint distribution. 2
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Linear versus Exponential

Theorem 1. Let k and R(k) be respectively the number of PAS and PRS
iterations needed to attain an objective function value of y or better, for
y∗ ≤ y ≤ y∗. Then

R(k) = ek+o(k), with probability 1,

where limk→∞ o(k)/k = 0, with probability 1.

Proof. Use general fact about records that limk→∞
ln R(k)

k = 1, with probability
1... 2
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Relative Improvement

Definition. Let Zk = (y∗− Yk)/(Yk − y∗) be the relative improvement obtained
by the kth iteration of PRS.

Then, the cumulative distribution function F of Zk is given by

F (z) = P (Zk ≤ z)

= P (Yk ≥ (y∗ + zy∗)/(1 + z))

=
{

0 if z < 0,
1− p((y∗ + zy∗)/(1 + z)) if 0 ≤ z < ∞.

Note also that the random variables Zk are iid and nonnegative.
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Relative Improvement Process

Lemma 2. Let Z1, Z2, . . . denote a sequence of iid nonnegative continuous
random variables with density f and cdf F . Let M(z) denote the number of
record values (in the max sense) of {Zi, i = 1, 2, . . .} less than or equal to z.

Then {M(z), z ≥ 0} is a nonhomogeneous Poisson process with intensity
function λ(z) = f(z)/(1− F (z)) and mean value function m(z) =

∫ z

0
λ(z) ds.

Theorem 2. Let N(z) be the number of PAS iterations achieving a relative
improvement at most z for z ≥ 0. Then {N(z), z ≥ 0} is a nonhomogeneous
Poisson process with mean value function

m(z) = ln(1/p((y∗ + zy∗)/(1 + z))), for 0 ≤ z < ∞.

Pure Adaptive Search [14]

Distribution of Objective Function Values

Theorem 3. P (Wk ≤ y) =
∑k−1

i=0
p(y)(ln(1/p(y)))i

i!

Proof. The events {Wk < y} and {N((y∗− y)/(y− y∗)) < k} are equivalent, so

P (Wk ≤ y) = P (Wk < y) = P (N((y∗ − y)/(y − y∗)) < k),

and by previous theorem N(z) is a Poisson random variable with mean

m(z) = ln(1/p((y∗ + zy∗)/(1 + z))),

etc. 2
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Performance Bounds

Let N∗(y) be the number of iterations require by PAS to achieve a value of y or
better. Then

N∗(y) = N((y∗ − y)/(y − y∗)) + 1

Corollary 1. The cumulative distribution of N∗(y) is given by

P (N∗(y) ≤ k) =
k−1∑
i=0

p(y)(ln(1/p(y)))i

i!
,

with
E[N∗(y)] = 1 + ln(1/p(y)), V ar(N∗(y)) = ln(1/p(y))
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Bounds for Lipschitz Functions

Lemma 3. For global optimization problem (P) over a convex feasible region S
in n dimensions with diameter dS = max{‖w − v‖, w, v ∈ S} and Lipschitz
constant kf ,

p(y) ≥ ((y − y∗)/kfdS)n, for y∗ ≤ y ≤ y∗.

Theorem 4. For any global optimization problem (P) over a convex feasible
region in n dimensions with diameter at most d and Lipschitz constant at most
k,

E[N∗(y)] ≤ 1 + [ln(kd/(y − y∗))]n

and
V ar(N∗(y)) ≤ [ln(kd/(y − y∗))]n

for y∗ ≤ y ≤ y∗.
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Conclusions

• Complexity of PRS is exponentially worse than that of PAS

• General performance bounds using theory from stochastic processes

• Specific performance bounds for Lipschitz functions : linear in dimension!

• But is this too good to be true?!
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