

Probability theory presents a systematic way to think about such issues

Examples

- Probability of:
- A newborn will be male?
- Getting HH in a coin toss?
- Getting a particular face on a die?
- In a bag with 1 red, 1 green and 3 blue balls. What is the probability to draw a red ball, a red or a blue ball?

Compound Probabilities

Disjunctive probabilities linked by addition A or B

Conjunctive probability

A and B

Disjunctive

- In a bag with 1 red, 1 green and 3 blue balls. What is the likelihood that you draw a red or a green ball?

0

- In a bag with 1 red, 1 green and 3 blue balls. What is the likelihood that you draw a red or a blue ball?

Conjunctive I

- In 2 coin tosses, what's the likelihood of getting 2 heads?

T	T
T	H
H	T
H	H

Conjunctive II

- In a bag with 1 red, 1 green and 3 blue balls. What is the likelihood that in 2 drawings you get 2 red balls?

0

- In a bag with 1 red, 1 green and 3 blue balls. What is the likelihood that 2 drawings you get 1 red and 1 blue ball?

Probability pathway

Head Tail (0.5) (0.5) (0.25) Tail Head (0.5) (0.5) (0.25)	 (0.5)	

Frequency of 2 coin toss

Frequency of 3 coin toss

Frequency of 6 coin toss

Binomial Distribution I

- A dramatic disease causes death in 60% of the cases. Only 40% people survive.
- What is the likelihood that 10 out of 10 people survive?
- Only one possible way to get 10 / 10...
- . 4 *. $4 * .4 * .4 * .4 * .4 * .4 * .4 * .4 * .4=.0001$

Binomial Distribution II

- A dramatic disease causes death in 60% of the cases. Only 40% people survive.
- What is the likelihood that (at least) 7 out of 10 people survive?
- A bit more complex ...

Calculating bonomial probabilities

- $P(r$ out of $n)=$ number of possible ways X Probability of each way
- Number of possible ways $=n!/[r!(n-r)!]$
- $P(7$ out of 10$)=$
- $0.4^{\wedge}(r) \times 0.6^{\wedge}(n-r)=0.4^{\wedge} 7 \times 0.6^{\wedge} 3=$ 0.00035389
- $10!/ 7!3!=120$
- $P(7$ out of 10$)=0.0425$

7 or more out of 10 ?

- 7 out of $10+8$ out of $10+9$ out of $10+$ 10 out of 10
- When we calculate the probability of an outcome (7), most times we calculate the probaility of the outcome or a more extreme outcome

Binomial summary

- By using the binomial distribution we can directly calculate the probability of en event (or a more extreme event).
- We can compare this probability to 0.05 and decide if it is significant or not.

Calculating distributions:

- 6 coins tossed:

$$
\text { - } n=6 ; p=.5 ; q=.5
$$

- Theoretical mean $(\mu)=n p=6 * .5=3$
- central tendency of distribution
- Variance $\left(\sigma^{\wedge} 2\right)=n^{*} p^{*} q$
- Standard deviation $=\sigma$
- $z=(r-\mu) / \sigma$

Z scores

$$
z=(r-\mu) / \sigma
$$

Probability of 6 Heads:
$z=(6-3) / 1.225=2.45$

Look for $z=2.45$ in the Normal
distribution table

Central limit theorem

- Approximations of normal distributions with increased number of observations

Frequency of 6 coin toss (10)

Frequency of 6 coin toss (100)

Frequency of 6 coin toss $(1,000)$

Summary

- Probability
- This is the base of stattistics...
- Binomial:
- A way to calculate probabilities of events directly
- Central limit theorem

