Simple statistics I

Statistics

Figures often beguile me, particularly when I have the arranging of them myself; in which case the remark attributed to Disraeli would often apply with justice and force: "There are three kinds of lies: lies, damned lies, and statistics."

Autobiography of Mark Twain

The goal of statistics is to

- Report data in meaningful ways
- Make predictions about future events

Statistics has 3+ components

- Data analysis
- Descriptive statistics
- Probability calculations
- Statistical inference
- Inferential statistics
- Models

Describing a state

- Descriptive statistics
- Capturing a picture of the data)
- This was the origin of statistics
- Started for gambling

First some descriptive statistics

- 15.301 is the "best class ever"?

Central tendencies

- Representing central tendencies of distributions is a very efficient way to understand something about it.
- Mode
- Median
- Mean

The Mode

- The most "popular" frequent occurring instance in the sample.
- This is the only central tendency that can be used with a nominal scale
- The mode is sensitive to aggregation of categories
- Age 18 vs age 18-21
- Sometimes there are multiple modes
- Bimodal distributions

The Median

- The median is a value which $1 / 2$ of the values are above it and 1/2 below
- After sorting the values by magnitude, the mode is at the $(n+1) / 2$ location
- $123,85,34,20,18,15,14 \rightarrow 20$
- $123,85,34,20,18,15 \rightarrow(20+34) / 2=27$
- When data is grouped, calculating the mode is a bit more complex

The Mean

- Mean $=(\Sigma X i) / n$
- The most important statistic
- Used for many other computations
- Stable
- Smallest mean square deviations from it
- Sensitive to extreme values
- Not "well behaved’ in non-standard distributions

Location of central tendencies

Normal
Mean
1.0

Mode
Median

Location of central tendencies

Location of central tendencies

Skew to right
Mean
Mode
. 5
Median

Location of central tendencies

Skew to left
Mean
. 5
Mode
Median

Distribution descriptors

- The Range
- The range is (Max - Min)
- Interquartile range
- Calculating is similar to median
- Q3-Q1 (1/2 of the observations)

Variation I

- Variance $\left(\sigma^{\wedge} 2\right)$
$-\Sigma(X i-\mu)^{\wedge} 2 /(n)$
$-\Sigma(X i-\mu)^{\wedge} 2 /(n-1)$
- Standard deviation (σ)
- Square root of variance
- Standard deviation is in the same units as the distribution

Variation II

- Variance ($\sigma^{\wedge} 2$) is:
- insensitive to transformations consisting of adding a constant.
- sensitive to transformations consisting of multiplying by a constant.

Describing scores:

- Z scores

$$
\begin{gathered}
z=(r-\mu) / \sigma \\
\mu=0, \sigma=1 \\
o T \text { scores }
\end{gathered}
$$

$\mu=50, \sigma=10$
SAT, GRE etc.

Confidence in estimates?

- How sure can we be that we know the mean of the distribution, for example?
- Standard error of the mean
$-\mu^{\wedge} 2$ / Square root of N

The Correlation

- The relationship between 2 variables does not have to be linear
- But in many cases they are
- Positive and negative correlations

Estimating correlations in scatter grams

- What is the correlation here?

Estimating correlations in scatter grams

- What is the correlation here?

Estimating correlations in scatter grams

- What is the correlation here?

Estimating correlations in scatter grams

- What is the correlation here?

Estimating correlations in scatter grams

- What is the correlation here?

Estimating correlations in scatter grams

- What is the correlation here?

Estimating correlations in scatter grams

- What is the correlation here?

The correlations were:

- $1 \rightarrow 0.1$
- $2 \rightarrow 0.3$
- $3 \rightarrow 0.5$
- $4 \rightarrow 0.7$
- $5 \rightarrow 0.9$
- $6 \rightarrow 0.99$
- $7 \rightarrow 01$

What is a correlation?

- What line to pick?
- Sum of all deviations from the line is 0
- The sum of square deviations of the points from the line is minimal.
- $R=S x y / S x * S y$
- The relationship of their joint standard deviation to their individual standard deviation
- $R^{\wedge} 2$ is the amount of explained variance

Summary

- One of the main usages of statistics is to describe data
- Central tendencies: Mean, Mode, Median
- Distribution tendencies: Variance, IQR, Correlations

