15.401 Recitation
 1: Present Value

Learning Objectives

- Review of Concepts

O Compounding/discounting
O PV/FV
O Real vs. nominal rate
O Annuities and perpetuities

- Examples

OCD
O Auto loan
O Scholarship fund
O Project planning

Review: Compounding / Discounting

- We can...

O move money forward in time by compounding.
O move money backward in time by discounting.

- Note:

O Only relative time matters
O Multiplying by $(1+r)^{m-n}=$ dividing by $(1+r)^{n-m}$.

Review: APR vs. EAR

\square Annual percentage rate (APR) vs. equivalent annual return (EAR):

$$
\mathrm{EAR}=\left(1+\frac{\mathrm{APR}}{N}\right)^{N}-1 \quad(N=\text { comp. freq. })
$$

\square Note:
O always use the EAR when compounding and discounting O Due to interest compounding, the EAR is higher than the APR whenever the compounding frequency is higher than once a year.

Continuous Compounding (optional)

- Given a fixed APR, higher compounding frequency leads to higher EAR. Suppose we take compounding frequency to infinity, then
$\mathrm{EAR}_{\infty}=\lim _{n \rightarrow \infty}\left(1+\frac{\mathrm{APR}}{N}\right)^{N}-1=e^{\mathrm{APR}}-1$.
($e=2.71828183 . .$.
- The continuously compounded EAR is the highest possible EAR for a given APR.

Review: PV / FV

- Cash flow:

- Present value (PV):

$$
\mathrm{PV}_{0}=\mathrm{C}_{0}+\frac{\mathrm{C}_{1}}{(1+r)^{1}}+\frac{\mathrm{C}_{2}}{(1+r)^{2}}+\cdots
$$

- Future value (FV) :

$$
\begin{aligned}
\mathrm{FV}_{T}= & \mathrm{C}_{0}(1+r)^{T}+\mathrm{C}_{1}(1+r)^{T-1}+\cdots \\
& +\mathrm{C}_{T}(1+r)^{0}+\mathrm{C}_{T+1}(1+r)^{-1}+\cdots
\end{aligned}
$$

Review: Nominal vs. Real Interest Rate

- Nominal-real interest rate conversion:

$$
1+r_{\text {real }}=\frac{1+r_{\text {nominal }}}{1+i}
$$

- Nominal-real cash flow conversion:

$$
\mathrm{C}_{\text {real }}=\frac{\mathrm{C}_{\text {nominal }}}{1+i}
$$

\square When you discount or compound,
O Either use the nominal cash flow and the nominal interest rate
O Or use the real cash flow and the real interest rate O Do not mix and match

Review: Annuity/Perpetuity

\square Annuity:

\square Perpetuity:

Review: Growing Annuity/Perpetuity

\square Growing Annuity:

\square Growing Perpetuity ($r>g$):

Example 1: CD

- You can invest $\$ 10,000$ in a CD offered by your bank. The CD matures in 5 years and the bank quotes you a rate of 4.5%. How much will you have in 5 years, if the 4.5% is
a) EAR
b) Quarterly APR
c) Monthly APR

Example 1: CD

- Answer:
a) $10,000 \times(1.045)^{5}=\$ 12,461.82$

$$
\text { b) } \begin{aligned}
r_{\text {EAR }}=\left(1+\frac{0.045}{4}\right)^{4} & =1.04576 \\
10,000 \times(1.04576)^{5} & =\$ 12,507.51
\end{aligned}
$$

C) $r_{\text {EAR }}=\left(1+\frac{0.045}{12}\right)^{12}=1.04594$
$10,000 \times(1.04594)^{5}=\$ 12,517.96$

Example 2: Auto Loan

- You would like to buy a new car for $\$ 22,000$. The dealer requires a down payment of $\$ 10,000$ and offers you 6\% APR financing (compounded monthly) for 5 years for the remaining balance. What is your monthly payment?

Example 2: Auto Loan

\square Answer: let C be the monthly payment, then

$$
\begin{aligned}
22000 & =\frac{C}{0.06 / 12}\left[1-\frac{1}{(1+0.06 / 12)^{12 \times 5}}\right]+10000 \\
\mathrm{C} & =\$ 231.99
\end{aligned}
$$

Example 3: Scholarship Fund

- You would like to establish a scholarship fund that will help outstanding students with financial difficulties pay their college tuition.
0 Starting today, you hope to give 50 students $\$ 20,000$ each in today's money (i.e., adjusted for inflation) every year.
O The effective nominal interest rate is $5 \% / \mathrm{yr}$.
O Inflation is $2 \% / y r$.
- How much money do you need now if you want the fund to last forever?

Example 3: Scholarship Fund

- Answer:

O Method 1: nominal amount + nominal interest rate

$$
1 \mathrm{~m}+\frac{1 \mathrm{~m} \times 1.02}{1.05-1.02}=35 \mathrm{~m}
$$

O Method 2: real amount + real interest rate

$$
r_{\text {real }}=\frac{1.05}{1.02}-1=2.9412 \% \Rightarrow 1 \mathrm{~m}+\frac{1 \mathrm{~m}}{0.029412}=35 \mathrm{~m}
$$

O Note: same answer!

- You need $\$ 35$ million today.

Example 4: Project Planning

\square GeneriCorp is considering whether or not to expand into a new market. The company faces the following cash flow (in \$million) if it decides to expand:

\square A committee appointed by the CEO determined that the appropriate discount rate is 9%. Should the company take on the expansion project?

Example 4: Project Planning

- Answer:

$$
\begin{aligned}
\mathrm{NPV} & =-200-\frac{400}{1.09}-\frac{300}{1.09^{2}}+\frac{100}{1.09^{3}}+\frac{500}{1.09^{4}}+\frac{600}{1.09^{5}} \\
& =\$ 1.91 \mathrm{~m}
\end{aligned}
$$

\square Positive NPV = take the project; though NPV is dangerously close to zero.
pttp://ocw.mit.edu

15.401 Finance Theory I

Fall 2008

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

