15.401 Recitation

2a: Fixed-Income Securities

Learning Objectives

\square Review of Concepts
O Spot/forward interest rates
O YTM and bond pricing

- Examples

O Spot/forward
O YTM and price
O Rate of return

Review: spot/forward interest rates

\square Spot rate $\left(r_{t}\right)$ is the interest rate for the period $(0, t)$. \square Forward rate $\left(f_{t, T}\right)$ is the interest rate for the period (t, T) determined at time o.
\square No arbitrage implies $\left(1+r_{t}\right)^{t} \times\left(1+f_{t, T}\right)^{(T-t)}=\left(1+r_{T}\right)^{T}$.

Review: zero-coupon bond

\square The spot rates are implied in the prices of zero-coupon (pure discount) bonds.
\square We can calculate r_{t} given the price of a t-period zero-coupon bond:
$P=\frac{F V}{\left(1+r_{t}\right)^{t}} \Leftrightarrow r_{t}=\left(\frac{F V}{P}\right)^{\frac{1}{t}}-1$
(FV = face value)
\square After we find r_{t} and r_{T}, we can calculate $f_{t, T}$.

Review: coupon bond

- The price of a coupon bond can be expressed as:

$$
P=\sum_{t=1}^{T} \frac{C_{t}}{(1+y)^{t}}+\frac{F V}{(1+y)^{T}} \text { or } P=\sum_{t=1}^{T} \frac{C_{t}}{\left(1+r_{t}\right)^{t}}+\frac{F V}{\left(1+r_{T}\right)^{T}}
$$

$\square y$ is the yield-to-maturity (or yield). It is equal to the rate of return on the bond if
O it is bought now at price P and held to maturity, and O all coupons are reinvested at rate y.
$\square y$ is not a spot rate.
\square There is a one-to-one mapping between y and P.

Example 1: spot and forward rates

- Yields on three Treasury notes are given as follows:

Maturity (yrs)	Coupon rate (\%)	YTM (\%)
1	0	5.25
2	5	5.50
3	6	6.00

a. What are the prices of the 1-year, 2-year and 3-year notes with face value $=\$ 100$?
b. What are the spot interest rates for year 1,2 and 3 ?
c. What is the implied forward rate for year 2 to year 3 ?

Example 1: spot and forward rates

- Answer:
a. $P_{1}=\frac{100}{1+5.25 \%}=\$ 95.01$

$$
\begin{aligned}
& P_{2}=\frac{5}{1+5.50 \%}+\frac{105}{(1+5.50 \%)^{2}}=\$ 99.08 \\
& P_{3}=\$ 100
\end{aligned}
$$

b. $r_{1}=5.2500 \% ; r_{2}=5.5063 \% ; r_{3}=6.0359 \%$
c. $f_{2,3}=\frac{\left(1+r_{3}\right)^{3}}{\left(1+r_{2}\right)^{2}}-1=7.1032 \%$

Example 2: YTM and price

- What is the price of a ten-year 5\% treasury bond (face value = \$100, annual coupon payments) if the yield to maturity is...
$\mathrm{O}_{4 \%}$?
O 5\%?
O 6\%?
\square When is the price above/at/below par?

Example 2: YTM and price

- Answer:

$$
\begin{aligned}
P(F V, r, y) & =\sum_{t=1}^{T} \frac{F V \cdot r}{(1+y)^{t}}+\frac{F V}{(1+y)^{T}} \\
& =F V\left[\frac{r}{y}\left(1-\frac{1}{(1+y)^{T}}\right)+\frac{1}{(1+y)^{T}}\right]
\end{aligned}
$$

O 4\%: \$108.11
O 5\%: \$100.00
O 6\%: \$ 92.64
\square Price is above/at/below par when YTM is lower than/equal to/higher than the coupon rate.

Example 3: Rate of Return

- Suppose that you bought a 2-year STRIP (face value $=\$ 100$) a year ago, and the interest rates at the time were as follows:

Years	Spot rate (\%)
1	2.5
2	3
3	5

O You sell your STRIP right now, and the yield curve happens to be the same as a year ago. What is the annualized return on your investment?
O What is the annualized return if you sell it next year?

Example 3: Rate of Return

- Answer:

O Purchase price $=100 /(1.03)^{2}=\$ 94.26$
O Current price $=100 / 1.025=\$ 97.56$
O Sell now: realized return $=3.5024 \%$ per year
O Sell next year: return $=3 \%$ per year (for sure)

Example 3: Rate of Return (revisited)

\square Suppose that five years ago today, you bought a 6\% ten-year treasury bond (face value $=\$ 100$, annual coupon payments) at a yield of 3.5% per year.
\square Since then, you have deposited the coupons in a bank at 2\% per year.

- Today you sell the bond at a yield of 5% per year.
\square What is the annualized return on your investment?

Example 3: Rate of Return (revisited)

- Answer:

O Cumulative value of deposited coupons $=31.22$
O Selling price today $=104.33$
O Total payoff = 135.55
O Purchase price $=120.79$
O Annualized realized return $=2.3328 \%$
\square Follow-up question:
O Why is the realized return so low?

15.401 Recitation
 2b: Fixed-Income Securities

Learning Objectives

\square Review of Concepts
O Bond arbitrage
O Duration/convexity
O Immunization

- Examples

O Duration
O Bond arbitrage
O True/false

Review: bond arbitrage

- Bond arbitrage is possible when its price is not equal to the PV of payments discounted at the spot rates
- Caveats:

O the bond must have the same risk characteristics as the securities from which the spot rates are derived (e.g., riskless);

O each coupon payment can be matched exactly by a spot rate;
O it is possible to borrow/lend at all spot rates.
\square General strategy:
O Buy low, sell high

Review: bond arbitrage

- Detailed strategy:

O Scale available payoff streams so that the net cash flow at $t=1,2, \ldots$ is exactly zero.
O Adjust the signs so that the payoff at $t=0$ is positive.

Multiplier	Asset	$t=0$	$t=1$	$t=2$...	$t=\mathrm{T}$
$\mathrm{m}_{\text {A }}$	A	$-m_{A} P_{A}$	$m_{A} C_{A_{1}}$	$\mathrm{m}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}_{1}}$..	$\mathrm{m}_{\mathrm{A}} \mathrm{C}_{\text {AT }}$
m_{B}	B	$-m_{B} P_{B}$	$m_{A} C_{A_{1}}$	$m_{B} C_{B 2}$	\ldots	$m_{B} C_{B T}$
\ldots	\ldots	\cdots	\cdots	\cdots
m_{N}	N	$-m_{N} P_{N}$	$\mathrm{m}_{\mathrm{N}} \mathrm{C}_{\mathrm{N}_{1}}$	$\mathrm{m}_{\mathrm{N}} \mathrm{C}_{\mathrm{N}_{2}}$	\cdots	$\mathrm{m}_{\mathrm{N}} \mathrm{C}_{\mathrm{NT}}$
+		Π_{0}	0	0	...	0

Review: bond arbitrage

- Remarks:

O Arbitrage strategy is not unique.
0 Given an arbitrage strategy $\left(m_{A}, m_{B}, \ldots, m_{N}\right)$ with profit $\Pi_{0},\left(k \cdot m_{A}, k \cdot m_{B}, \ldots, k \cdot m_{N}\right)$ is also an arbitrage strategy with profit $\mathrm{k} \cdot \mathrm{m}_{0}$.
O A strategy where cash flows at $\mathrm{t}=0,1, \ldots$ T are all zero except at $\mathrm{t}=\mathrm{s}>\mathrm{o}$ (when it is positive) is also an arbitrage.
O For the purpose of this course, we only consider the type of arbitrage strategies on the previous page.

Review: duration/convexity

\square Duration and modified duration measure a bond's exposure to interest rate risk:

$$
D=\frac{1}{P} \sum_{t=1}^{T} \frac{t \cdot C_{t}}{(1+y)^{t}}+\frac{T \cdot F V}{(1+y)^{T}} ; \quad M D=\frac{D}{1+y}
$$

\square Since $M D=-\frac{1}{P} \cdot \frac{\partial P}{\partial y}$, a small change (Δy) in YTM will cause bond price to change by approximately $\Delta P \approx-P \cdot M D \cdot \Delta y$.
\square The formula is not accurate for large changes in y.

Review: duration/convexity

- Convexity is...

0 the second derivative of $\mathrm{P}(\mathrm{y})$;
O a measure of curvature of $\mathrm{P}(\mathrm{y})$;
O the sensitivity of the duration to a change in the yield.

$$
C X=-\frac{1}{P} \cdot \frac{\partial^{2} P}{\partial y^{2}}
$$

\square A better approximation:

$$
\frac{\Delta P}{P} \approx-\Delta y \cdot M D+\frac{(\Delta y)^{2}}{2} \cdot C X .
$$

Immunization

- The duration of a portfolio with weight w on asset X and ($1-w$) on asset Y is $[w \times D(X)+(1-w) \times D(Y)]$.
\square Institutions such as banks, pension funds and insurance companies are highly exposed to interest rate fluctuations. They would like to insure or immunize against such fluctuations.
\square Solution: structure the balance sheet so that V(Assets) $\times \mathrm{D}$ (Assets) $=\mathrm{V}$ (Liabilities) $\times \mathrm{D}$ (Liabilities).
\square Continuous rebalancing is required for perfect immunization.

Example 1: duration

- Consider a 10-year bond with a face value of $\$ 100$ that pays an annual coupon of 8\%. Assume spot rates are flat at 5%.
a. Find the bond's price and duration.
b. Suppose that $10 y r$ yields increase by 10bps. Calculate the change in the bond's price using your bond pricing formula and then using the duration approximation.
c. Suppose now that $10 y r$ yields increase by 200bps.

Repeat your calculations for part (b).

Example 1: duration

\square Answer:
a. $P=\frac{8}{1.05}+\frac{8}{1.05^{2}}+\ldots+\frac{108}{1.05^{10}}=\$ 123.16$

$$
D=\frac{1}{123.16}\left(\frac{8 \cdot 1}{1.05}+\frac{8 \cdot 2}{1.05^{2}}+\cdots+\frac{108 \cdot 10}{1.05^{10}}\right)=7.54
$$

b. Actual new price $=\$ 122.28$.

$$
\begin{aligned}
& \Delta P \approx-P \times \frac{D}{1+y} \times \Delta y=-123.16 \times \frac{7.54}{1.05} \times 0.001=-\$ 0.88 \\
& \Rightarrow P_{\text {new }}=\$ 122.28 .
\end{aligned}
$$

c. Actual new price $=\$ 107.02$

New price using duration approximation $=\$ 105.47$

Example 2: bond arbitrage

\square Find an arbitrage portfolio given the following riskless bonds:

Asset	$t-0$	$t-1$	$t-2$	$t-3$
A	-97	100		
B	-92		100	
C	-87			100
D	-102	5	5	105

Example 2: bond arbitrage

- Answer:

Multiplier	Asset	$t=0$	$t=1$	$t=2$	$t=3$
x	A	$-97 x$	100 X		
y	B	-92 y		100 y	
z	C	-87 z			100 Z
W	D	-102 W	5 W	5 W	105 W
			0	0	0

$\square x=-0.05 \mathrm{~W}$
$\square \mathrm{y}=-0.05 \mathrm{~W}$
$\square z=-1.05 \mathrm{w}$

Example 2: bond arbitrage

$\square \pi_{0}=-97 \cdot(-0.05 w)-92 \cdot(-0.05 w)-87 \cdot(-1.05 w)-102 w$

$$
=-1.2 \mathrm{~W}
$$

\square Set w = - 1

- Arbitrage strategy:

O Long 0.05 A
O Long 0.05 B
O Long 1.05 C
O Short 1 D
\square Profit $=1.2$

Example 3: true or false

- True or false:

O Investors expect higher returns on long-term bonds than short-term bonds because they are riskier. Thus, the term structure of interest rates is always upward sloping.
O To reduce interest rate risk, an overfunded pension fund, i.e., a fund with more assets than liabilities, should invest in assets with longer duration than its liabilities.

Example 3: true or false

- Answer:

O False. The term structure depends on the expected path of interest rates (among other factors). For example, if interest rates are expected to fall, the term structure will be downward sloping.
O False. To minimize interest rate risks, we want $M D(A) \times V(A)-M D(L) \times V(L)=0$. If $V(A)>V(L)$, we want $M D(A)<M D(L)$. That means we should invest in assets with shorter duration.

MIT OpenCourseWare
|http://ocw.mit.edu
15.401 Finance Theory I

Fall 2008

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

