15.401 Recitation
 5: Options

Learning Objectives

- Review of Concepts

O Payoff profile
O Put-call parity
O Valuation of options
O Binomial tree

- Examples

O Payoff replication
O Arboreal Corporation

Review: elements of a call/put option

\square Type:
O Call: holder has the right but not the obligation to buy
O Put: holder has the right but not the obligation to sell
\square Quantity of the underlying asset:
O Usually one share of stock with current price S
\square Strike/exercise price (K)

- Expiration date (T)
- Style:

O European: can only be exercised at T
O American: can be exercised at any time between o and T.

Review: payoff profile

	Call	Put
$\begin{aligned} & \text { 중 } \\ & \hline 1 \end{aligned}$		
$\begin{aligned} & \frac{\pi}{0} \\ & \frac{1}{n} \end{aligned}$		

Review: payoff profile

- The payoff of a portfolio of options is the sum of payoffs of the individual components:

Review: put-call parity

- Two portfolios with identical payoffs

Review: put-call parity

\square No arbitrage implies that the two portfolios must have the same cost:

$$
\begin{aligned}
& C+P V(K)=P+S \\
& C+\frac{K}{(1+r)^{T}}=P+S
\end{aligned}
$$

This is the put-call parity.
\square Note: the call and put must have the same exercise price (K).

Review: value of an option

	Value of call	Value of put
Strike price (K)	Decrease	Increase
Price of underlying asset (S)	Increase	Decrease
Volatility of the underlying asset (σ)	Increase	Increase
Maturity (T)	Increase	Increase
Interest rate (r)	Increase	Decrease

Review: binomial tree

\square Idea: if there are only two states of the world next period, we can price options given the underlying asset and a risk-free asset ("bond") by replication:

Review: binomial tree

- Replication:

	CF at $t=\mathbf{0}$	CF at t=1 ("up" state)	CF at t=1 ("down" state)
A shares of underlying asset	$-\mathrm{A} \times \mathrm{S}$	$\mathrm{A} \times \mathrm{S}_{u}$	$\mathrm{~A} \times \mathrm{S}_{\mathrm{d}}$
Bond (FV=B)	$-\mathrm{B} /(1+r)$	B	B
Total	$-\mathrm{A} \times \mathrm{S}-\mathrm{B} /(1+r)$	$\mathrm{A} \times \mathrm{S}_{u}+\mathrm{B}$	$\mathrm{A} \times \mathrm{S}_{\mathrm{d}}+\mathrm{B}$
Replication	$=-C$	$=C_{u}$	$=C_{d}$

OA $=\left(C_{u}-C_{d}\right) /\left(S_{u}-S_{d}\right)$
$\mathrm{OB}=\mathrm{C}_{u}-\mathrm{A} \times \mathrm{S}_{u}$
$O C=A \times S+B /(1+r)$

Review: binomial tree

- Equivalently, we can solve for the risk-neutral probability, q :

$$
S=\frac{q S_{u}+(1-q) S_{d}}{1+r}
$$

\square Then,

$$
C=\frac{q C_{u}+(1-q) C_{d}}{1+r}
$$

- Note: q is not related to the state probability p. In fact, p is not used in the pricing of C.

Example 1: payoff replication

- How would you replicate the following payoff profile using only call and put options?
a)

b)

Example 1: payoff replication

- Answer:
a) Long 1 call $(K=10)$

Short 1 call $(K=15)$
Short 1 call ($K=25$)
Long 1 call ($K=30$)
b) Long 1 put ($\mathrm{K}=8$)

Short 1 call ($K=8$)
Long 2 calls ($K=12$)
Short 1 call $(K=20)$

Example 2: Arboreal Corporation

\square Arboreal Corporations stock price is currently $\$ 102$. At the end of 3 months it will be either $\$ 120$ or $\$ 90$. The 3 -month spot rate is 2%. What is the value of a 3-month European call option with a strike price of $\$ 110$?

Stock

Call

Example 2: Arboreal Corporation

- The call can be replicated with:

O Long $1 / 3$ stock: costs $\$ 34$
O Short bond with $\mathrm{FV}=30$: costs $-\$ 30 /(1+2 \%)=-\$ 29.41$
\square The price of the call must be

$$
C=34-29.41=\$ 4.59
$$

\square Alternatively, we can solve for the risk-neutral probability: $\frac{120 q+90(1-q)}{1+2 \%}=102 \Rightarrow q=0.468$

- The price of the call is then

$$
C=\frac{10(0.468)+0(1-0.468)}{1+2 \%}=\$ 4.59
$$

MIT OpenCourseWare
|http://ocw.mit.edu
15.401 Finance Theory I

Fall 2008

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

