IIIIIIIII
 MITSIoan
 management
 15.401 Finance Theory

MIT Sloan MBA Program

Andrew W. Lo
 Harris \& Harris Group Professor, MIT Sloan School

Lectures 2-3: Present Value Relations

Critical Concepts

- Cashflows and Assets
- The Present Value Operator
- The Time Value of Money
- Special Cashflows: The Perpetuity
- Special Cashflows: The Annuity
- Compounding
- Inflation
- Extensions and Qualifications

Readings:

- Brealey, Myers, and Allen Chapters 2-3

Cashflows and Assets

Key Question: What Is An "Asset"?

- Business entity
- Property, plant, and equipment
- Patents, R\&D
- Stocks, bonds, options, ...
- Knowledge, reputation, opportunities, etc.

From A Business Perspective, An Asset Is A Sequence of Cashflows

$$
\text { Asset }_{t} \equiv\left\{\mathrm{CF}_{t}, \mathrm{CF}_{t+1}, \mathrm{CF}_{t+2}, \ldots\right\}
$$

Examples of Assets as Cashflows

- Boeing is evaluating whether to proceed with development of a new regional jet. You expect development to take 3 years, cost roughly $\$ 850$ million, and you hope to get unit costs down to $\$ 33$ million. You forecast that Boeing can sell 30 planes every year at an average price of $\$ 41$ million.
- Firms in the S\&P 500 are expected to earn, collectively, \$66 this year and to pay dividends of $\$ 24$ per share, adjusted to index. Dividends and earnings have grown 6.6% annually (or about 3.2% in real terms) since 1926.
- You were just hired by HP. Your initial pay package includes a grant of 50,000 stock options with a strike price of $\$ 24.92$ and an expiration date of 10 years. HP's stock price has varied between $\$ 16.08$ and $\$ 26.03$ during the past two years.

Cashflows and Assets

Valuing An Asset Requires Valuing A Sequence of Cashflows

- Sequences of cashflows are the "basic building blocks" of finance

Value of $\operatorname{Asset}_{t} \equiv V_{t}\left(\mathrm{CF}_{t}, \mathrm{CF}_{t+1}, \mathrm{CF}_{t+2}, \ldots\right)$

Always Draw A Timeline To Visualize The Timing of Cashflows

The Present Value Operator

What is V_{t} ?

- What factors are involved in determining the value of any object?
- Subjective?
- Objective?
- How is value determined?

There Are Two Distinct Cases

- No Uncertainty
- We have a complete solution
- Uncertainty
- We have a partial solution (approximation)
- The reason: synergies and other interaction effects
- Value is determined the same way, but we want to understand how

The Present Value Operator

Key Insight: Cashflows At Different Dates Are Different "Currencies"

- Consider manipulating foreign currencies

$$
¥ 150+£ 300 \stackrel{?}{=} ? ?
$$

The Present Value Operator

Key Insight: Cashflows At Different Dates Are Different "Currencies"

- Consider manipulating foreign currencies

$$
¥ 150+£ 300 \stackrel{?}{=} ? ? 450
$$

- Cannot add currencies without first converting into common currency

$$
\begin{aligned}
& ¥ 150+(£ 300) \times(153 ¥ / £)=¥ 46,050.00 \\
& (¥ 150) \times(0.0065 £ / ¥)+£ 300=£ 300.98
\end{aligned}
$$

- Given exchange rates, either currency can be used as "numeraire"
- Same idea for cashflows of different dates

The Present Value Operator

Key Insight: Cashflows At Different Dates Are Different "Currencies"

- Past and future cannot be combined without first converting them
- Once "exchange rates" are given, combining cashflows is trivial
$\xrightarrow[t=0]{\substack{1}}$
- A numeraire date should be picked, typically $t=0$ or "today"
- Cashflows can then be converted to present value

$$
V_{0}\left(\mathrm{CF}_{1}, C F_{2}, C F_{3}, \ldots\right)=\left(\frac{\$_{1}}{\$_{0}}\right) \times C F_{1}+\left(\frac{\$_{2}}{\$_{0}}\right) \times \mathrm{CF}_{2}+\cdots
$$

The Present Value Operator

Net Present Value: "Net" of Initial Cost or Investment

- Can be captured by date-0 cashflow CF_{0}

$$
V_{0}\left(\mathrm{CF}_{0}, \mathrm{CF}_{1}, \ldots\right)=\mathrm{CF}_{0}+\left(\frac{\$_{1}}{\$_{0}}\right) \times \mathrm{CF}_{1}+\left(\frac{\$_{2}}{\$_{0}}\right) \times \mathrm{CF}_{2}+\cdots
$$

- If there is an initial investment, then $\mathrm{CF}_{0}<0$
- Note that any CF_{t} can be negative (future costs)
- V_{0} is a completely general expression for net present value

How Can We Decompose V_{0} Into Present Value of Revenues and Costs?

The Present Value Operator

Example:

- Suppose we have the following "exchange rates":

$$
\left(\frac{\$_{1}}{\$_{0}}\right)=0.90 \quad, \quad\left(\frac{\$_{2}}{\$_{0}}\right)=0.80
$$

- What is the net present value of a project requiring a current investment of \$10MM with cashflows of \$5MM in Year 1 and \$7MM in Year 2?

$$
N P V_{0}=-\$ 10+\$ 5 \times 0.90+\$ 7 \times 0.80=\$ 0.10
$$

- Suppose a buyer wishes to purchase this project but pay for it two years from now. How much should you ask for?

The Present Value Operator

Example:

- Suppose we have the following "exchange rates":

$$
\left(\frac{\$_{1}}{\$_{0}}\right)=0.90 \quad, \quad\left(\frac{\$_{2}}{\$_{0}}\right)=0.80
$$

- What is the net present value of a project requiring an investment of \$8MM in Year 2, with a cashflow of \$2MM immediately and a cashflow of \$5 in Year 1?

$$
N P V_{0}=\$ 2+\$ 5 \times 0.900-\$ 8 \times 0.80=\$ 0.10
$$

- Suppose a buyer wishes to purchase this project but pay for it two years from now. How much should you ask for?

The Time Value of Money

Implicit Assumptions/Requirements For NPV Calculations

- Cashflows are known (magnitudes, signs, timing)
- Exchange rates are known
- No frictions in currency conversions

Do These Assumptions Hold in Practice?

- Which assumptions are most often violated?
- Which assumptions are most plausible?

Until Lecture 12, We Will Take These Assumptions As Truth

- Focus now on exchange rates
- Where do they come from, how are they determined?

The Time Value of Money

What Determines The Growth of \$1 Over T Years?

- $\$ 1$ today should be worth more than $\$ 1$ in the future (why?)
- Supply and demand
- Opportunity cost of capital r

$$
\begin{aligned}
\$ 1 \text { in Year } 0 & =\$ 1 \times(1+r) \text { in Year } 1 \\
\$ 1 \text { in Year } 0 & =\$ 1 \times(1+r)^{2} \text { in Year } 2 \\
& \vdots \\
\$ 1 \text { in Year } 0 & =\$ 1 \times(1+r)^{T} \text { in Year } T
\end{aligned}
$$

- Equivalence of $\$ 1$ today and any other single choice above
- Other choices are future values of $\$ 1$ today

The Time Value of Money

What Determines The Value Today of \$1 In Year-T?

- $\$ 1$ in Year-T should be worth less than $\$ 1$ today (why?)
- Supply and demand
- Opportunity cost of capital r

$$
\begin{array}{r}
\$ 1 /(1+r) \text { in Year } 0=\$ 1 \text { in Year } 1 \\
\$ 1 /(1+r)^{2} \text { in Year } 0=\$ 1 \text { in Year } 2 \\
\\
\$ 1 /(1+r)^{T} \text { in Year } 0=\$ 1 \text { in Year } T
\end{array}
$$

- These are our "exchange rates" $\left(\$_{t} / \$_{0}\right)$ or discount factors

The Time Value of Money

We Now Have An Explicit Expression for V_{0} :

$$
\begin{aligned}
& V_{0}=\mathrm{CF}_{0}+\frac{1}{(1+r)} \times \mathrm{CF}_{1}+\frac{1}{(1+r)^{2}} \times \mathrm{CF}_{2}+\cdots \\
& V_{0}=\mathrm{CF}_{0}+\frac{\mathrm{CF}_{1}}{(1+r)}+\frac{\mathrm{CF}_{2}}{(1+r)^{2}}+\cdots
\end{aligned}
$$

- Using this expression, any cashflow can be valued!
- Take positive-NPV projects, reject negative NPV-projects
- Projects ranked by magnitudes of NPV
- All capital budgeting and corporate finance reduces to this expression
- However, we still require many assumptions (perfect markets)

The Time Value of Money

Example:

- Suppose you have $\$ 1$ today and the interest rate is 5%. How much will you have in ...

1 year \ldots	$\$ 1 \times 1.05=\$ 1.05$
2 years \ldots	$\$ 1 \times 1.05 \times 1.05=\$ 1.103$
3 years \ldots	$\$ 1 \times 1.05 \times 1.05 \times 1.05=\$ 1.158$

- $\$ 1$ today is equivalent to $\$ 1 \times(1+r)^{t}$ in t years
- $\$ 1$ in t years is equivalent to $\$ \frac{1}{(1+r)^{t}}$ today

The Time Value of Money

PV of \$1 Received In Year t

The Time Value of Money

Example:

Your firm spends \$800,000 annually for electricity at its Boston headquarters. Johnson Controls offers to install a new computercontrolled lighting system that will reduce electric bills by $\$ 90,000$ in each of the next three years. If the system costs $\$ 230,000$ fully installed, is this a good investment?

Lighting System*

Year	0	1	2	3
Cashflow	$-230,000$	90,000	90,000	90,000

* Assume the cost savings are known with certainty and the interest rate is 4\%

The Time Value of Money

Example:

Lighting System

Year	0	1	2	3
Cashflow	$-230,000$	90,000	90,000	90,000
\div		1.04	$(1.04)^{2}$	$(1.04)^{3}$
PV	$-230,000$	86,538	83,210	80,010

NPV = -230,000 + 86,538 + 83,210 + 80,010 = \$19,758

- Go ahead - project looks good!

The Time Value of Money

Example:

CNOOC recently made an offer of $\$ 67$ per share for Unocal. As part of the takeover, CNOOC will receive $\$ 7$ billion in 'cheap' loans from its parent company: a zero-interest, 2-year loan of $\$ 2.5$ billion and a $3.5 \%, 30$-year loan of $\$ 4.5$ billion. If CNOOC normal borrowing rate is 8%, how much is the interest subsidy worth?

- Interest Savings, Loan 1: $2.5 \times(0.08-0.000)=\$ 0.2$ billion
- Interest Savings, Loan 2: $4.5 \times(0.08-0.035)=\$ 0.2$ billion

$$
\begin{aligned}
P V & =\frac{0.4}{(1.08)}+\frac{0.4}{(1.08)^{2}}+\frac{0.2}{(1.08)^{3}}+\frac{0.2}{(1.08)^{4}}+\ldots+\frac{0.2}{(1.08)^{30}} \\
& =\$ 2.62 \text { billion }
\end{aligned}
$$

Special Cashflows: The Perpetuity

Perpetuity Pays Constant Cashflow C Forever

- How much is an infinite cashflow of C each year worth?
- How can we value it?

$$
\begin{aligned}
& \mathrm{PV}= \frac{C}{(1+r)}+\frac{C}{(1+r)^{2}}+\frac{C}{(1+r)^{3}}+\cdots \\
&(1+r) \times \mathrm{PV}= C+\frac{C}{(1+r)}+\frac{C}{(1+r)^{2}}+\cdots \\
& r \times \mathrm{PV}=C \\
& \mathrm{PV}=\frac{C}{r}
\end{aligned}
$$

Special Cashflows: The Perpetuity

Growing Perpetuity Pays Growing Cashflow $\mathbf{C}(1+g)^{t}$ Forever

- How much is an infinite growing cashflow of C each year worth?
- How can we value it?

$$
\begin{gathered}
\mathrm{PV}=\frac{C}{(1+r)}+\frac{C(1+g)}{(1+r)^{2}}+\frac{C(1+g)^{2}}{(1+r)^{3}}+ \\
\frac{(1+r)}{(1+g)} \times \mathrm{PV}=\frac{C}{(1+g)}+\frac{C}{(1+r)}+\frac{C(1+g)}{(1+r)^{2}}+\cdots \\
{\left[\frac{(1+r)}{(1+g)}-1\right] \times \mathrm{PV}=\frac{C}{(1+g)}} \\
\mathrm{PV}=\frac{C}{r-g}, r>g
\end{gathered}
$$

Special Cashflows: The Annuity

Annuity Pays Constant Cashflow C For T Periods

- Simple application of V_{0}

$$
\begin{aligned}
\mathrm{PV} & =\frac{C}{(1+r)}+\cdots+\frac{C}{(1+r)^{T}} \\
(1+r) \times \mathrm{PV} & =C+\frac{C}{(1+r)}+\frac{C}{(1+r)^{T-1}} \\
r \times \mathrm{PV} & =C-\frac{C}{(1+r)^{T}}
\end{aligned}
$$

$$
\mathrm{PV}=\frac{C}{r}-\frac{C}{r} \frac{1}{(1+r)^{T}}
$$

Special Cashflows: The Annuity

Annuity Pays Constant Cashflow C For T Periods

- Sometimes written as a product:

$$
\begin{aligned}
& \mathrm{PV}=\frac{C}{r}-\frac{C}{r} \frac{1}{(1+r)^{T}}=C \times \frac{1}{r}\left[1-\frac{1}{(1+r)^{T}}\right] \\
& =C \times \operatorname{ADF}(r, T) \\
& \operatorname{ADF}(r, T) \equiv \frac{1}{r}\left[1-\frac{1}{(1+r)^{T}}\right]
\end{aligned}
$$

Special Cashflows: The Annuity

Annuity Pays Constant Cashflow C For T Periods

- Related to perpetuity formula

Perpetuity

Minus

Date-T Perpetuity

Equals

T-Period Annuity

Special Cashflows: The Annuity

Example:

You just won the lottery and it pays $\$ 100,000$ a year for 20 years. Are you a millionaire? Suppose that $r=10 \%$.

$$
\begin{aligned}
\mathrm{PV} & =100,000 \times \frac{1}{0.10}\left(1-\frac{1}{1.10^{20}}\right) \\
& =100,000 \times 8.514=851,356
\end{aligned}
$$

- What if the payments last for 50 years?

$$
\begin{aligned}
P V & =100,000 \times \frac{1}{0.10}\left(1-\frac{1}{1.10^{50}}\right) \\
& =100,000 \times 9.915=991,481
\end{aligned}
$$

- How about forever (a perpetuity)?

$$
P V=100,000 / 0.10=1,000,000
$$

Compounding

Interest May Be Credited/Charged More Often Than Annually

- Bank accounts: daily
- Mortgages and leases: monthly
- Bonds: semiannually
- Effective annual rate may differ from annual percentage rate
- Why?

Typical Compounding Conventions:

- Let r denote APR, n periods of compounding
- r/n is per-period rate for each period
- Effective annual rate (EAR) is

$$
r_{\text {EAR }} \equiv(1+r / n)^{n}-1
$$

10\% Compounded Annually, SemiAnnually, Quarterly, and Monthly

Month	$\$ 1,000$	$\$ 1,000$	$\$ 1,000$	$\$ 1,000$
$\mathbf{1}$				$\$ 1,008$
$\mathbf{2}$			$\$ 1,025$	$\$ 1,017$
$\mathbf{3}$				$\$ 1,025$
$\mathbf{4}$				$\$ 1,034$
$\mathbf{5}$		$\$ 1,050$	$\$ 1,051$	$\$ 1,051$
$\mathbf{6}$				$\$ 1,060$
$\mathbf{7}$			$\$ 1,077$	$\$ 1,069$
$\mathbf{8}$				$\$ 1,078$
$\mathbf{9}$			$\$ 1,096$	
$\mathbf{1 0}$				
$\mathbf{1 1}$	$\$ 1,100$	$\$ 1,103$	$\$ 1,104$	$\$ 1,105$
$\mathbf{1 2}$	$\$ 1$,			

Example:

Car loan-'Finance charge on the unpaid balance, computed daily, at the rate of 6.75\% per year.'
If you borrow $\$ 10,000$, how much would you owe in a year?

Daily interest rate $=6.75 / 365=0.0185 \%$
Day 1: \quad Balance $=10,000.00 \times 1.000185=10,001.85$
Day 2: \quad Balance $=10,001.85 \times 1.000185=10,003.70$

Day 365: Balance $=10,696.26 \times 1.000185=10,698.24$
$E A R=6.982 \%>6.750 \%$

What Is Inflation?

- Change in real purchasing power of \$1 over time
- Different from time-value of money (how?)
- For some countries, inflation is extremely problematic
- How to quantify its effects?

Wealth $W_{t} \Leftrightarrow$ Price Index I_{t}
Wealth $W_{t+k} \Leftrightarrow$ Price Index I_{t+k}
Increase in Cost of Living $\equiv I_{t+k} / I_{t}=(1+\pi)^{k}$
"Real Wealth" $\widetilde{W}_{t+k} \equiv W_{t+k} /(1+\pi)^{k}$

Inflation

"Real Wealth" $\widetilde{W}_{t+k} \equiv W_{t+k} /(1+\pi)^{k}$
"Real Return" $\left(1+r_{\text {real }}\right)^{k} \equiv \frac{\widetilde{W}_{t+k}}{W_{t}}$

$$
\begin{aligned}
& =\frac{W_{t+k}}{W_{t}} \frac{1}{(1+\pi)^{k}}=\frac{\left(1+r_{\text {nominal }}\right)^{k}}{(1+\pi)^{k}} \\
r_{\text {real }} & =\frac{1+r_{\text {nominal }}}{1+\pi}-1 \\
& \approx r_{\text {nominal }}-\pi
\end{aligned}
$$

For NPV Calculations, Treat Inflation Consistently

- Discount real cashflows using real interest rates
- Discount nominal cashflows using nominal interest rates
- Nominal cashflows \Rightarrow expressed in actual-dollar cashflows
- Real cashflows $\quad \Rightarrow$ expressed in constant purchasing power
- Nominal rate $\quad \Rightarrow$ actual prevailing interest rate
- Real rate $\quad \Rightarrow$ interest rate adjusted for inflation

Example:

This year you earned $\$ 100,000$. You expect your earnings to grow 2\% annually, in real terms, for the remaining 20 years of your career. Interest rates are currently 5% and inflation is 2%. What is the present value of your income?

Real Interest Rate $=1.05 / 1.02-1=2.94 \%$

Real Cashflows

Year	1	2	\ldots	20
Cashflow	102,000	104,040	\ldots	148,595
\div	1.0294	1.02942^{2}	\ldots	1.02942^{20}
PV	99,086	98,180	\ldots	83,219

Present Value = \$1,818,674

Extensions and Qualifications

- Taxes
- Currencies
- Term structure of interest rates
- Forecasting cashflows
- Choosing the right discount rate (risk adjustments)
- Assets are sequences of cashflows
- Date-t cashflows are different from date-(t+k) cashflows
- Use "exchange rates" to convert one type of cashflow into another
- PV and FV related by "exchange rates"
- Exchange rates are determined by supply/demand
- Opportunity cost of capital: expected return on equivalent investments in financial markets
- For NPV calculations, visualize cashflows first
- Decision rule: accept positive NPV projects, reject negative ones
- Special cashflows: perpetuities and annuities
- Compounding
- Inflation
- Extensions and Qualifications

Additional References

- Bodie, Z. and R. Merton, 2000, Finance. New Jersey: Prentice Hall.
- Brealey, R., Myers, S., and F. Allen, 2006, Principles of Corporate Finance. New York: McGraw-Hill Irwin.
- Copeland, T., Weston, F. and K. Shastri, 2003, Financial Theory and Corporate Policy, (4th Edition). Reading, MA: Addison-Wesley.

MIT OpenCourseWare
|http://ocw.mit.edu

15.401 Finance Theory I

Fall 2008

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

