IIIIIIIII
 MITSIoan
 management
 15.401 Finance Theory

MIT Sloan MBA Program

Andrew W. Lo
 Harris \& Harris Group Professor, MIT Sloan School

Lecture 7: Equities

Critical Concepts

- Industry Overview
- The Dividend Discount Model
- DDM with Multiple-Stage Growth
- EPS and P/E
- Growth Opportunities and Growth Stocks

Reading

- Brealey, Myers and Allen, Chapter 4

What Is Common Stock?

- Equity, an ownership position, in a corporation
- Payouts to common stock are dividends, in two forms:
- Cash dividends
- Stock dividends
- Unlike bonds, payouts are uncertain in both magnitude and timing
- Equity can be sold (private vs. public equity)

Key Characteristics of Common Stock:

- Residual claimant to corporate assets (after bondholders)
- Limited liability
- Voting rights
- Access to public markets and ease of shortsales

The Primary Market (Underwriting)

- Venture capital: A company issues shares to special investment partnerships, investment institutions, and wealthy individuals
- Initial public offering (IPO): A company issues shares to the general public for the first time (i.e., going public)
- Secondary or seasoned equity offerings (SEO): A public company issues additional shares
- Stock issuance to the general public is usually organized by an investment bank who acts as an underwriter: it buys part or all of the issue and resells it to the public

Secondary Market (Resale Market)

- Organized exchanges: NYSE, AMEX, NASDAQ, etc.
- Specialists, broker/dealers, and electronic market-making (ECNs)
- OTC: NASDAQ

Industry Overview

Source: Thomson Financial
*Excludes Closed-End Funds

Images by MIT OpenCourseWare.

The Dividend Discount Model

Most Basic Valuation Model for Common Stock

- Applies PV formulas to common-stock payouts
- Two inputs: expected future dividends, discount rate
- Notation:
- P_{t} : Price of stock at t (ex-dividend)
- D_{t} : Cash dividend at t
- $\mathrm{E}_{t}[$]: Expectation operator (forecast) at t
- r_{t} : Risk-adjusted discount rate for cashflow at t

$$
\begin{aligned}
P_{t} & =V_{t}\left(D_{t+1}, D_{t+2}, \ldots\right)=\frac{\mathrm{E}_{t}\left[D_{t+1}\right]}{\left(1+r_{t+1}\right)}+\frac{\mathrm{E}_{t}\left[D_{t+2}\right]}{\left(1+r_{t+2}\right)^{2}}+\cdots \\
P_{t} & \equiv \sum_{k=1}^{\infty} \frac{\mathrm{E}_{t}\left[D_{t+k}\right]}{\left(1+r_{t+k}\right)^{k}}
\end{aligned}
$$

The Dividend Discount Model

Most Basic Valuation Model for Common Stock

- Two additional simplifying assumptions:

$$
\mathrm{E}_{t}\left[D_{t+k}\right]=D \quad, \quad r_{t+k}=r
$$

- In this case, we have the first version of the dividend discount model or the discounted cashflow (DCF) model

$$
P_{t} \equiv \sum_{k=1}^{\infty} \frac{\mathrm{E}_{t}\left[D_{t+k}\right]}{\left(1+r_{t+k}\right)^{k}}=\sum_{k=1}^{\infty} \frac{D}{(1+r)^{k}}=\frac{D}{r}
$$

- Suppose dividends grow at rate g over time (Gordon growth model):

$$
P_{t} \equiv \sum_{k=1}^{\infty} \frac{\mathrm{E}_{t}\left[D_{t+k}\right]}{\left(1+r_{t+k}\right)^{k}}=\sum_{k=1}^{\infty} \frac{D(1+g)^{k-1}}{(1+r)^{k}}=\frac{D}{r-g}, r>g
$$

The Dividend Discount Model

Most Basic Valuation Model for Common Stock

- This provides a convenient expression for the discount rate:

$$
\begin{aligned}
P_{t} & =\frac{D}{r-g}, r>g \\
r-g & =\frac{D}{P_{t}}
\end{aligned}
$$

$$
r=\frac{D}{P_{t}}+g=\frac{D_{0}(1+g)}{P_{t}}+g
$$

The Dividend Discount Model

Example:

Dividends are expected to grow at 6\% per year and the current dividend is $\$ 1$ per share. The expected rate of return is 20%. What should the current stock price be?

$$
P_{0}=\frac{1.06}{0.20-0.06} \times 1=\$ 7.57
$$

- Note: DDM with constant growth gives a relation between current stock price, current dividend, dividend growth rate and the expected return. Knowing three of the variables determines the fourth.

The Dividend Discount Model

Example:

Determine the cost of capital of Duke Power. In 09/92, the dividend yield for Duke Power was $D_{0} / P_{0}=0.052$. Estimates of long-run growth:

Info Source	Value Line (VL)	I/B/E/S
Growth g	0.049	0.041

- The cost of capital is given by

$$
r=\frac{(1+g) D_{0}}{P_{0}}+g
$$

Thus,

	Cost of Capital
VL	$r=(0.052)(1.049)+0.049=10.35 \%$
IBES	$r=(0.052)(1.041)+0.041=9.51 \%$

DDM with Multiple-Stage Growth

Firms May Have Multiple Stages of Growth

- Growth Stage: rapidly expanding sales, high profit margins, and abnormally high growth in earnings per share, many new investment opportunities, low dividend payout ratio
- Transition Stage: growth rate and profit margin reduced by competition, fewer new investment opportunities, high payout ratio
- Mature Stage: earnings growth, payout ratio and average return on equity stabilizes for the remaining life of the firm

Example:

A company with $D_{0}=\$ 1$ and $r=20 \%$ grows at 6% for the first 7 years and then drops to zero thereafter. What should its current price be?

$$
P_{0}=\sum_{t=1}^{7} \frac{(1.06)^{t}(1)}{1.2^{t}}+\frac{1}{1.2^{7}} \frac{(1.06)^{7}(1)}{0.2}=\$ 6.49
$$

EPS and P/E

Dividend Forecasts Involve Many Practical Challenges

- Terminology:
- Earnings: total profit net of depreciation and taxes
- Payout Ratio p: dividend/earnings = DPS/EPS
- Retained Earnings: (earnings - dividends)
- Plowback Ratio b: retained earnings/total earnings
- Book Value BV: cumulative retained earnings
- Return on Book Equity ROE: earnings/BV
- Using these concepts, different valuation formulas may be derived
- Note: these are mostly based on accounting data, not market values

EPS and P/E

Example:

(Myers) Texas Western (TW) is expected to earn \$1.00 next year. Book value per share is $\$ 10.00$ now. TW plans an investment program which will increase net book assets by 8\% per year. Earnings are expected to grow proportionally. The investment is financed by retained earnings. The discount rate is 10%, which is assumed to be the same as the rate of return on new investments. Price TW's share price if

- TW expands at 8\% forever
- TW's expansion slows down to 4\% after year 5
- Observe that
- Plowback Ratio b = (10)(0.08)/(1) $=0.8$
- Payout Ratio p = (1-0.8)/(1) = 0.2
- ROE = 10\%

EPS and P/E

Example (cont):

- Continuing Expansion Case:

$$
\begin{aligned}
g & =\mathrm{ROE} \times b=(0.10)(0.8)=0.08 \\
D_{1} & =\mathrm{EPS}_{1} \times p=(1)(0.2)=0.2 \\
P_{0} & =\frac{D_{1}}{r-g}=\frac{0.2}{0.10-0.08}=\$ 10.00
\end{aligned}
$$

EPS and P/E

Example (cont):

- 2-Stage Expansion Case. Forecast EPS, D, BVPS by year:

Year	0	1	2	3	4	5	6
EPS		1.00	1.08	1.17	1.26	1.36	1.47
Investment		0.80	0.86	0.94	1.00	1.08	0.59
Dividend	0.20	0.22	0.23	0.26	0.28	0.88	
BVPS	10.00	10.80	11.66	12.60	13.60	14.69	15.28
\quad							
$\quad P_{0}=\sum_{t=1}^{5} \frac{D_{t}}{(1.1)^{t}}+\frac{1}{(1.1)^{5}} \frac{0.88}{(0.10-0.04)}=\$ 10.00$							

Question: Why are the values the same under both scenarios?

Growth Opportunities and Growth Stocks

What Are Growth Stocks?

- Stocks of companies that have access to growth opportunities are considered growth stocks
- Growth opportunities are investment opportunities that earn expected returns higher than the required rate of return on capital
- Example: IBM in the 60's and 70's.
- Note: The following may not be growth stocks
- A stock with growing EPS
- A stock with growing dividends
- A stock with growing assets
- Note: The following may be growth stocks
- A stock with EPS growing slower than required rate of return
- A stock with DPS growing slower than required rate of return

Growth Opportunities and Growth Stocks

Example:

ABC Software has: Expected EPS next year of \$8.33; Payout ratio of
0.6 ; ROE of 25%; and, cost of capital of $r=15 \%$

$$
\begin{aligned}
D_{1} & =p \times \mathrm{EPS}=(0.6)(8.33)=\$ 5.00 \\
g & =b \times \mathrm{ROE}=(0.4)(0.25)=0.10
\end{aligned}
$$

- Following a no-growth strategy ($g=0, p=1$), its value is

$$
P_{0}=\frac{D_{1}}{r-g}=\frac{\mathrm{EPS}_{1}}{r}=\frac{8.33}{0.15}=\$ 55.56
$$

- Following a growth strategy, its price is

$$
P_{0}=\frac{D_{1}}{r-g}=\frac{5.00}{0.15-0.10}=\$ 100
$$

- Difference of $\$ 100-\$ 55.56=\$ 44.44$ comes from growth opportunities, which offers a return of 25%, higher than the required rate of return 15%

Growth Opportunities and Growth Stocks

Example (cont):

- At $\mathrm{t}=1$: ABC can invest (0.4)(8.33)=\$3.33 at a permanent 25% rate of return. This investment generates a cash flow of (0.25)(3.33) $=\$ 0.83$ per year starting at the $t=2$. Its NPV at $t=1$ is

$$
N P V_{1}=-3.33+\frac{0.83}{0.15}=\$ 2.22
$$

- At $t=2$: Everything is the same except that $A B C$ will invest $\$ 3.67$, 10% more than at $\mathrm{t}=1$ (the growth is 10%). The investment is made with NPV being

$$
N P V_{2}=(2.22)(1.1)=\$ 2.44
$$

- The total present value of growth opportunities (PVGO) is

$$
\mathrm{PVGO}=\frac{N P V_{1}}{r-g}=\frac{2.22}{0.15-0.10}=\$ 44.44
$$

- This makes up the difference in value between growth and no-growth

Growth Opportunities and Growth Stocks

Stock Price Can Be Decomposed Into Two Components

1. Present value of earnings under a no-growth policy
2. Present value of growth opportunities

$$
P_{0}=\frac{\mathrm{EPS}_{1}}{r}+\mathrm{PVGO}
$$

- Terminology*:
- Earnings yield: E/P = EPS $/ P_{0}$
- P/E ratio: $\mathrm{P} / \mathrm{E}=\mathrm{P}_{0} / \mathrm{EPS}_{1}$
*Note: In newspapers, P/E ratios are often computed with the most recent earnings, but investors are more concerned with price relative to future earnings.

Growth Opportunities and Growth Stocks

- If PVGO $=0, P / E$ ratio equals inverse of cost of capital

$$
\mathrm{P} / \mathrm{E}=\frac{1}{r}
$$

- If PVGO > 0, P/E ratio becomes higher:

$$
\mathrm{P} / \mathrm{E}=\frac{1}{r}+\frac{\mathrm{PVGO}}{\mathrm{EPS}_{1}}>\frac{1}{r}
$$

- PVGO is positive only if the firm earns more than its cost of capital

Key Points

- The Dividend Discount Model
- The Gordon Growth Model
- Discount rate, cost of capital, required rate of return
- Estimating discount rates with D/P and g
- EPS, P/E, and PVGO
- Definitions of growth stocks and growth opportunities

Additional References

- Harris, L., 2002, Trading and Exchanges: Market Microstructure for Practitioners. New York: Oxford University Press.
- Lefevre, E., 2006, Reminiscences of a Stock Operator. New York: John Wiley \& Sons.
- Malkiel, B., 1996, A Random Walk Down Wall Street: Including a Life-Cycle Guide to Personal Investing. New York: W.W. Norton.

MIT OpenCourseWare
|http://ocw.mit.edu

15.401 Finance Theory I

Fall 2008

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

