IIIIIIII
 MITSIoan
 management

 15.401 Finance Theory

 15.401 Finance Theory}

MIT Sloan MBA Program

Andrew W. Lo
 Harris \& Harris Group Professor, MIT Sloan School

Lecture 12: Introduction to Risk and Return

Critical Concepts

- Motivation
- Statistical Background
- Empirical Properties of Stock Returns
- Anomalies

Readings

- Brealey, Myers, and Allen Chapters 7, 24.1, 24.4

NPV and Other Valuation Techniques Need Cost of Capital

- Opportunity cost
- Required rate of return
- Risk-adjusted discount rate
- Determined by "the market"
- How???

Introduce Risk Into The Valuation Process

- How to measure risk
- How to estimate the required rate of return for a given level of risk
- Related questions:
- How risky are stocks and what have their returns been historically?
- Is the stock market "efficient"?
- How can we gauge the performance of portfolio managers?

Statistical Background

Terminology

$$
\text { Return } R_{i t} \equiv \frac{D_{i t}+P_{i t}-P_{i t-1}}{P_{i t-1}}=\frac{D_{i t}+P_{i t}}{P_{i t-1}}-1
$$

Expected Return $\equiv \mathrm{E}\left[R_{i t}\right]$

Excess Return $\equiv R_{i t}-r_{f}$
Risk Premium $\equiv \mathrm{E}\left[R_{i t}\right]-r_{f}$

Statistical Background

Terminology

- Mean, variance, standard deviation: $\mu_{i} \equiv \mathrm{E}\left[R_{i t}\right]$

$$
\begin{aligned}
\sigma_{i}^{2} & \equiv \mathrm{E}\left[\left(R_{i t}-\mu_{i}\right)^{2}\right] \\
\sigma_{i} & =\sqrt{\sigma_{i}^{2}}
\end{aligned}
$$

- Sample estimators:

$$
\begin{aligned}
\hat{\mu}_{i} & \equiv \frac{1}{T} \sum_{t=1}^{T} R_{i t} \\
\hat{\sigma}_{i}^{2} & \equiv \frac{1}{T-1} \sum_{t=1}^{T}\left(R_{i t}-\widehat{\mu}_{i}\right)^{2} \\
\hat{\sigma}_{i} & =\sqrt{\widehat{\sigma}_{i}^{2}}
\end{aligned}
$$

Statistical Background

Other Statistics

- Median
- 50th percentile (probability of $1 / 2$ that $R_{t}<$ median)
- Skewness
- Is the distribution symmetric?
- Negative: big losses are more likely than big gains
- Positive: big gains are more likely than big losses
- Correlation
- How closely do two variables move together?

$$
\begin{aligned}
\operatorname{Cov}\left[R_{i t}, R_{j t}\right] & \equiv \mathrm{E}\left[\left(R_{i t}-\mu_{i}\right)\left(R_{j t}-\mu_{j}\right)\right] \quad \text { Covariance } \\
\operatorname{Corr}\left[R_{i t}, R_{j t}\right] & \equiv \frac{\mathrm{E}\left[\left(R_{i t}-\mu_{i}\right)\left(R_{j t}-\mu_{j}\right)\right]}{\sigma_{i} \sigma_{j}} \text { Correlation }
\end{aligned}
$$

Statistical Background

Negatively Skewed Distribution

Statistical Background

Examples of Correlation Between Two Random Variables

Statistical Background

Normal Distribution

- Bell-shaped, symmetric
- A model of randomness
- Central Limit Theorem

Confidence Intervals
If R is normally distributed, then ...

- $\mathbf{6 8 \%}$ of observations fall within +/- $\mathbf{1 . 0 0}$ std. deviations from mean
- $\mathbf{9 0 \%}$ of observations fall within +/-1.65 std. deviations from mean
- 95% of observations fall within +/-1.96 std. deviations from mean
- 99% of observations fall within +/-2.58 std. deviations from mean

GM Monthly Returns

Empirical Properties of Stock Returns

What Characterizes U.S. Stock Returns?

- How volatile are stock returns?
- Are returns predictable?
- How does volatility change over time?
- What types of stocks have the highest returns?

What Properties Should Stock Prices Have In "Efficient" Markets?

- Random, unpredictable
- Prices should react quickly and correctly to news
- Investors cannot earn abnormal, risk-adjusted returns (or at least it shouldn't be easy)

Empirical Properties of Stock Returns

Predictable Price Changes

Empirical Properties of Stock Returns

Random Walks with Drift

Empirical Properties of Stock Returns

Four facts from history of U.S. financial markets:

1. Real interest rate has been slightly positive on average.
2. Return on more risky assets has been higher on average than return on less risky assets.
3. Returns on risky assets can be highly correlated to each other.
4. Returns on risky assets are (usually) serially uncorrelated.

Basic Statistics, U.S., 1946-2001 (monthly, in percent)

	Avg	Stdev	Skew	Min	Max
Inflation	0.32	0.36	0.82	-0.84	1.85
Tbill (1 yr)	0.38	0.24	0.98	0.03	1.34
Tnote (0) yr)	0.46	2.63	0.61	-7.73	13.31
VW stock index	1.01	4.23	-0.47	-22.49	16.56
EW stock index	1.18	5.30	-0.17	-27.09	29.92
Motorola	1.66	10.02	0.01	-33.49	41.67

NYSE, Amex, NASDAQ: 6,700 firms, $\$ 16.4$ trillion market cap

Empirical Properties of Stock Returns

Total Return of Stocks, Bonds, Bills and Inflation 1946-2001

Empirical Properties of Stock Returns

Interest Rates 1953-2001

Empirical Properties of Stock Returns

Total Returns, 10-Year U.S. T-Bond, 1946-2001

Empirical Properties of Stock Returns

Total Returns, U.S. Stock Market 1946 - 2001

Empirical Properties of Stock Returns

Total Returns, Motorola 1946-2001

Empirical Properties of Stock Returns

Scatterplot, VWRETD Today vs. Yesterday ,1980-1999

Empirical Properties of Stock Returns

Scatterplot, S\&P 500 This Month vs. Last Month, 1926 to 1997

Empirical Properties of Stock Returns

Scatterplot GM vs. S\&P 500 Monthly Returns, 1946 - 1997

Empirical Properties of Stock Returns

Monthly Estimates of U.S. Stock Market Daily Volatility 1926-1997

Firms sorted by MARKET CAPITALIZATION

Anomalies: The January Effect, 1964-2004

Firms sorted by MARKET CAPITALIZATION

[^0]
Anomalies: IPO Returns, 1970-1990

Average Annual Returns, 1 - 5 Years After IPO

Anomalies: SEO Returns, 1970-1990

Average Annual Returns, 1 - 5 Years After SEO

Anomalies: Takeover Announcements

Stock price of TARGET

Image by MIT OpenCourseWare.

Anomalies: Performance of Mutual Funds

Image by MIT OpenCourseWare.

Observations

- The average annual return on U.S. stocks from 1926-2004 was 11.2\%. The average risk premium was 7.8%.
- Stocks are quite risky. The standard deviation of returns for the overall market is 4.5% monthly (16.4% annually).
- Individual stocks are much riskier. The average monthly standard deviation of an individual stock is around 17% (or 50% annually).
- Stocks tend to move together over time: when one stock goes up, other stocks are likely to go up as well. The correlation is far from perfect.
- Stock returns are nearly unpredictable. For example, knowing how a stock does this month tells you very little about what will happen next month.
- Market volatility changes over time. Prices are sometimes quite volatile. The standard deviation of monthly returns varies from roughly 2% to 20%.
- Financial ratios like DY and P/E ratios vary widely over time. DY hit a maximum of 13.8% in 1932 and a minimum of 1.17% in 1999. The P/E ratio hit a maximum of 33.4 in 1999 and a minimum of 5.3 in 1917.

Key Points

Anomalies:

- Size Effect: Smaller stocks typically outperform larger stocks, especially in January.
- January Effect: Returns in January tend to be abnormally high.
- Value Effect: Low P/B (value) stocks typically outperform high P/B (growth) stocks.
- Momentum: Stocks with high returns over the past 12 months typically continue to outperform stocks with low past returns.
- Accruals and Issuances: Stocks with high past accruals and/or recent stock offerings typically underperform stocks with low past accruals and no stock offerings.

Additional References

- Lefevre, E., 2006, Reminiscences of a Stock Operator. New York: John Wiley \& Sons.
- Malkiel, B., 1996, A Random Walk Down Wall Street: Including a Life-Cycle Guide to Personal Investing. New York: W.W. Norton.

MIT OpenCourseWare
|http://ocw.mit.edu

15.401 Finance Theory I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: *Operating income minus operating cashflows

