

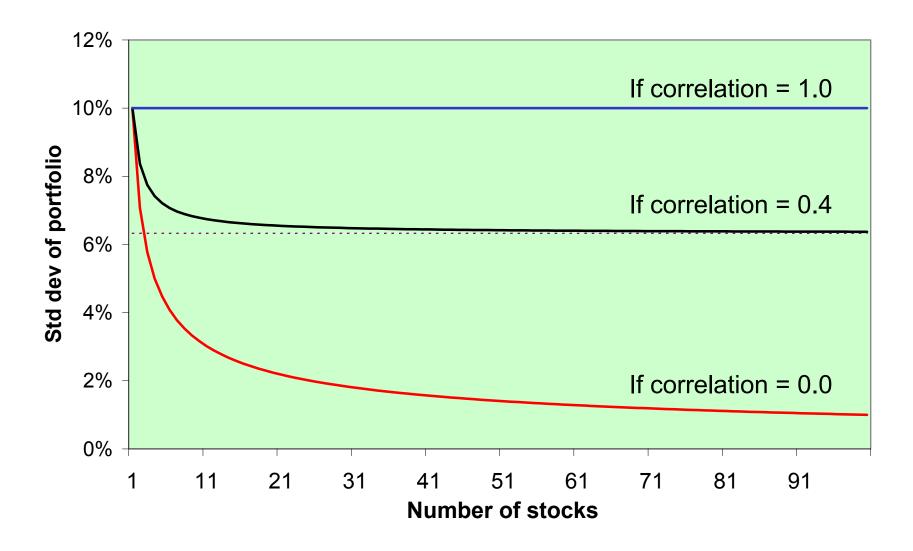
Today

The CAPM

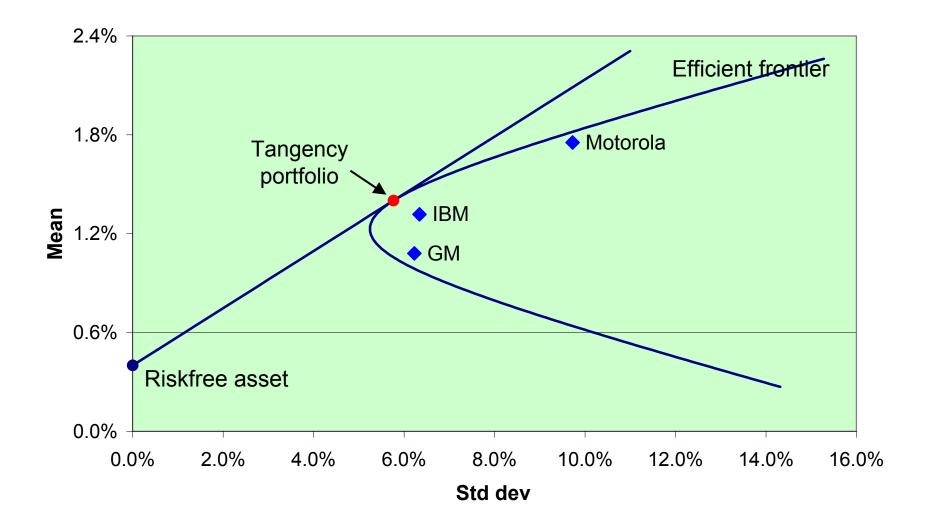
- Measuring risk
- Systematic vs. diversifiable risk
- The trade-off between risk and return

Reading

• Brealey and Myers, Chapter 8.2 – 8.5


Review

Diversification


- Diversification reduces risk, as long as stocks aren't perfectly correlated with each other.
- Portfolio variance depends primarily on the covariances among stocks, not the individual variances. Risk common to all firms cannot be diversified away.
- Investors should try to hold portfolios that maximize expected return for a given level of risk. The tangency portfolio is the best portfolio.

Class 11

Diversification

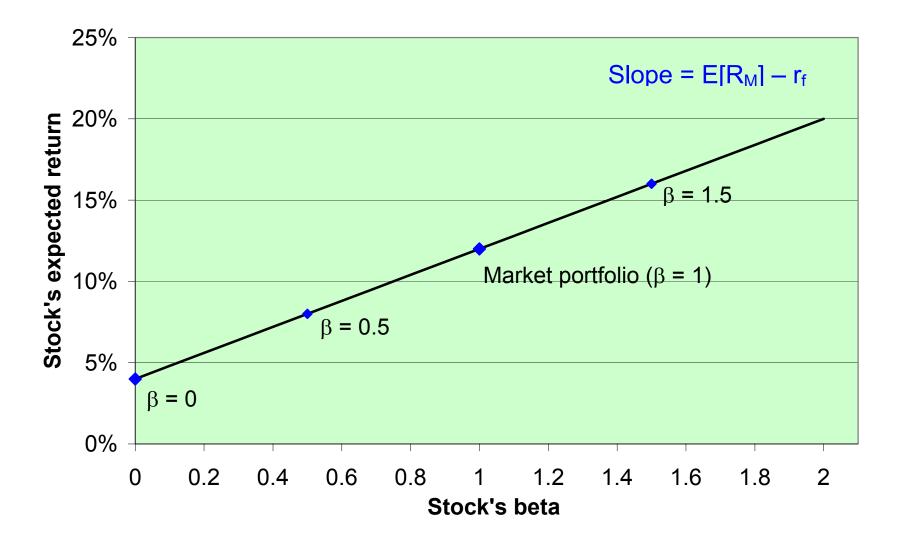
Optimal portfolios

The CAPM

<u>Capital Asset Pricing Model</u>

- > Stock prices are affected by firm-specific and marketwide **risks.** Investors care only about risk that is non-diversifiable. > A stock's non-diversifiable risk is measured by beta, the
 - slope when the stock is regressed on the market:

$$\mathsf{R}_{\mathsf{i}} = \alpha + \beta \mathsf{R}_{\mathsf{M}} + \varepsilon$$


Expected, or required, returns are a linear function of betas:

 $E[R_i] = r_f + \beta_i E[R_M - r_f]$ Market risk premium

Class 11

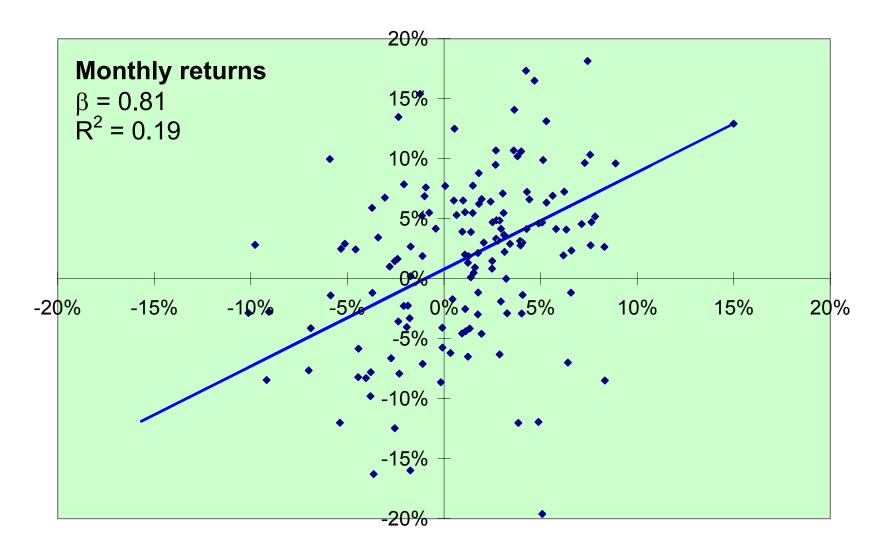
For example, a stock with $\beta = 2$ is twice as risky as the market, so investors require twice the risk premium.

CAPM: Security Market Line

Beta

Regression slope

How sensitive is the stock to overall market movements? How much does the stock go up or down when other stocks go up or down?


> $R_i = \alpha + \beta R_M + \varepsilon$

- ε = firm-specific return ('diversifiable,' 'idiosyncratic,' or 'unsystematic' risk)
- β = sensitivity to market returns
 ('systematic,' 'non-diversifiable,' or 'macroeconomic' risk)
- R² = explained variance (fraction of variance explained by market returns)

Class 11

Regressions in Excel

Gillette vs. Total U.S. market return

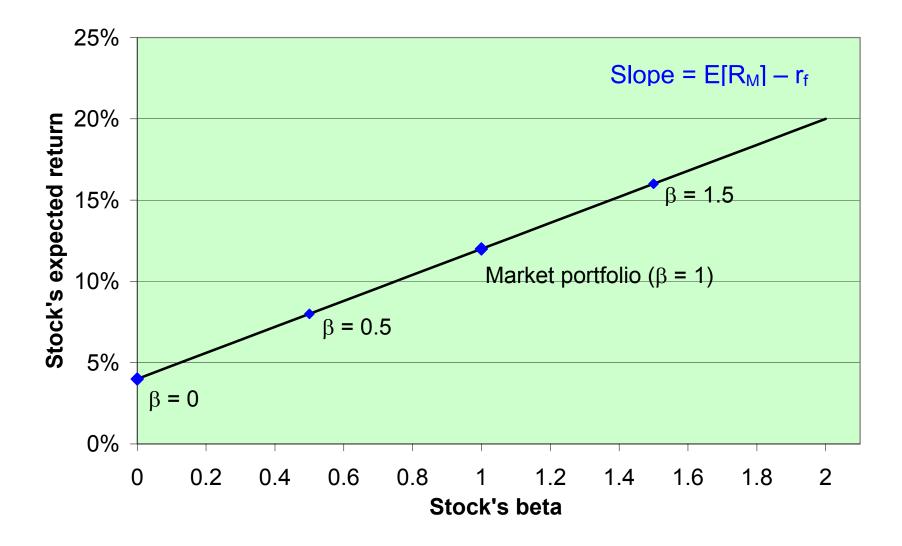
NASDAQ vs. Total U.S. market return

Betas, 1960 – 2001

Size-sorted portfolios

1960 – 1979			1980 – 2001		
Decile	β	R^2	Decile	β	R^2
Smallest	1.58	0.60	Smallest	1.27	0.49
2	1.45	0.76	2	1.25	0.72
3	1.45	0.81	3	1.26	0.75
4	1.36	0.84	4	1.22	0.79
5	1.32	0.86	5	1.18	0.80
6	1.27	0.90	6	1.13	0.85
7	1.22	0.92	7	1.09	0.89
8	1.16	0.95	8	1.04	0.91
9	1.05	0.96	9	1.02	0.95
Largest	0.92	0.97	Largest	0.96	0.97

Class 11


CAPM

Key insight

For a diversified investor, beta measures a stock's contribution to portfolio risk. Beta, not variance, is the appropriate measure of risk.

The required return on a stock equals:

 $\mathbf{E}[\mathbf{R}_{i}] = \mathbf{r}_{f} + \beta_{i} \mathbf{E}[\mathbf{R}_{M} - \mathbf{r}_{f}]$

Example 1

Using monthly returns from 1990 - 2001, you estimate that Microsoft has a beta of 1.49 (std err = 0.18) and Gillette has a beta of 0.81 (std err = 0.14). If these estimates are a reliable guide for their risks going forward, what rate of return is required for an investment in each stock?

> $E[R_i] = r_f + \beta_i E[R_M - r_f]$

Tbill rate = 1.0%; market risk premium is around 4 - 6%.

> Expected returns

Gillette: $E[R_{GS}] = 0.01 + (0.81 \times 0.06) = 5.86\%$

Microsoft: $E[R_{MSFT}] = 0.01 + (1.49 \times 0.06) = 9.94\%$

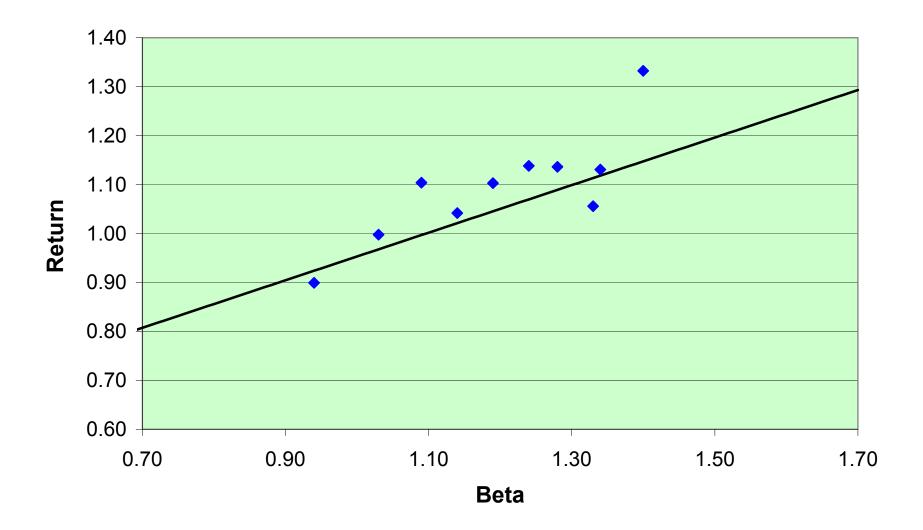
Example 2

Over the past 40 years, the smallest decile of firms had an average monthly return of 1.33% and a beta of 1.40. The largest decile of firms had an average return of 0.90% and a beta of 0.94. Over the same time period, the riskfree rate averaged 0.43% and the market risk premium was 0.49%. Are the average returns consistent with the CAPM?

> $E[R_i] = r_f + \beta_i E[R_M - r_f]$

Tbill rate = 0.43%; market risk premium is 0.49%.

> How far are average returns from the CAPM security market line?


Size portfolios, 1960 – 2001

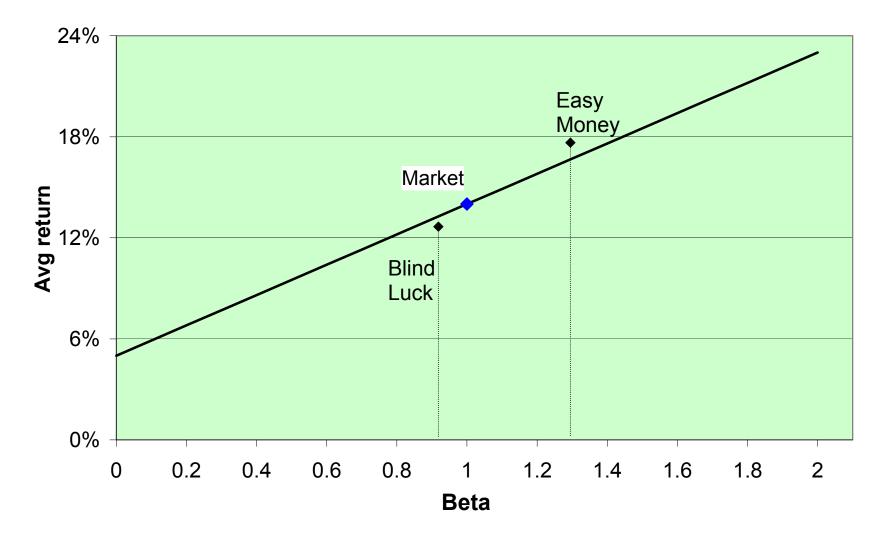
Average returns vs. CAPM

	Avg		CAPM	
Decile	return	β	$r_f + \beta_i E[R_M - r_f]$	Difference
Smallest	1.33	1.40	1.15	0.19
2	1.06	1.33	1.11	-0.06
3	1.13	1.34	1.12	0.01
4	1.14	1.28	1.09	0.05
5	1.14	1.24	1.07	0.07
6	1.10	1.19	1.04	0.06
7	1.04	1.14	1.02	0.02
8	1.10	1.09	0.99	0.11
9	1.00	1.03	0.97	0.03
Largest	0.90	0.94	0.93	-0.03

Difference = Avg. return – CAPM prediction

Size portfolios, 1960 – 2001

Example 3


You are choosing between two mutual funds. Over the past 10 years, BlindLuck Value Fund had an average return of 12.8% and a β of 0.9. EasyMoney Growth Fund had a return of 17.9% and a β of 1.3. The market's average return over the same period was 14% and the Tbill rate was 5%.

Which fund is better?

Portfolio	Avg return	β	CAPM r _f + β _i E[R _M – r _f]	Dif
Market	14.0%	1.0		
BlindLuck	12.8	0.9	13.1	-0.30
EasyMoney	17.9	1.3	16.7	1.20

['Dif' is referred to as the fund's 'alpha']

CAPM

Applications

Measures and quantifies 'risk'

One stock or project is riskier than another stock or project if it has a higher β .

> Valuation

The CAPM provides a way to estimate the firm's cost of capital (risk-adjusted discount rate).*

Evaluating a stock or mutual fund's risk-adjusted performance The CADM provides a hopebmork

The CAPM provides a benchmark.

* Graham and Harvey (2000) survey CFOs; 74% of firms use the CAPM to estimate the cost of capital.

Observation 1

Portfolios

A portfolio's beta is a weighted average of the betas of the individual stocks.

Stocks 1, ..., N Portfolio return: $R_P = w_1 R_1 + w_2 R_2 + ... + w_N R_N$

Individual stocks

Portfolio

$$R_{1} = \alpha_{1} + \beta_{1} R_{M} + \varepsilon_{1}$$

$$R_{2} = \alpha_{2} + \beta_{2} R_{M} + \varepsilon_{2}$$

$$\vdots$$

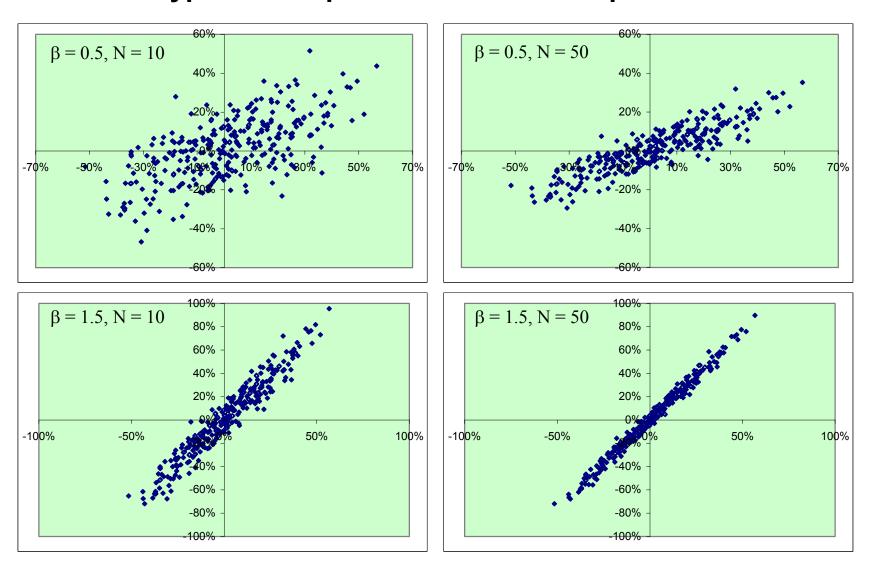
$$R_{N} = \alpha_{N} + \beta_{N} R_{M} + \varepsilon_{N}$$

$$R_{P} = \alpha_{P} + \beta_{P} R_{M} + \varepsilon_{P}$$
avg of $\beta_{1}, ..., \beta_{N}$

What happens to the residual variance when more stocks are added?

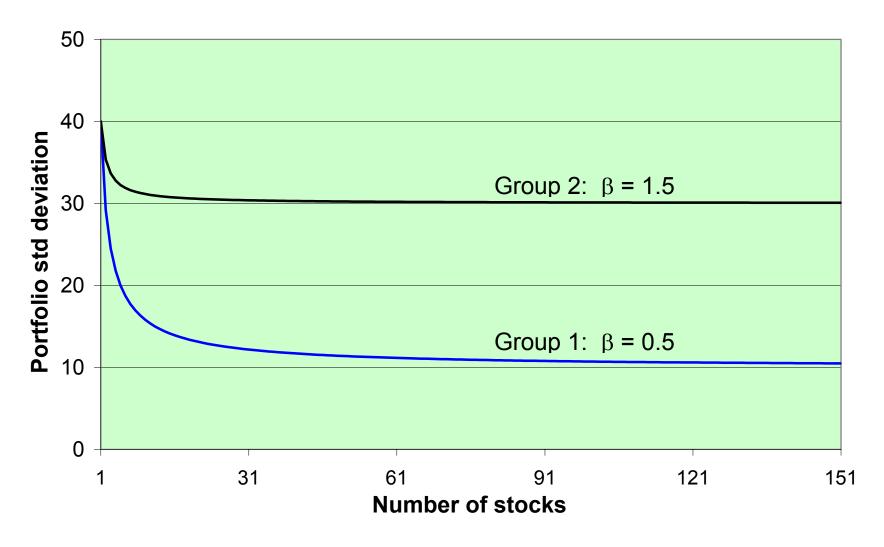
Class 11

Observation 1


Example

Two groups of stocks

Group 1: $\beta = 0.5$ Group 2: $\beta = 1.5$


All stocks have a standard deviation of 40%. The market portfolio has standard deviation of 20%.

How does portfolio beta and residual risk change as the portfolio gets more and more stocks?

Hypothetical portfolios vs. market portfolio

Diversification

Class 11

Observation 2

Total variance vs. beta risk

Two assets can have the same total variance, but much different β 's. Investors should care only about systematic, beta, risk.

 $var(R_i) = \beta^2 var(R_M) + var(\varepsilon_i)$

Which stock is riskier?

Stock 1: $std(R_1) = 0.40$, $\beta = 0.5$

Stock 2: $std(R_2) = 0.40$, $\beta = 1.5$

Class 11

15.414

Observation 3

Assets can have negative risk!

A stock's β is less than 0 if the stock is negatively correlated with the market portfolio.

If the market goes down, it goes up.

Such a stock contributes negatively to portfolio risk.

The stock is better than riskfree!

Examples

Various derivative securities; return from a short sale of stock

Class 11

Observation 4

Tangency portfolio

The CAPM implies that the market portfolio should be the tangency portfolio.

The market portfolio will have the highest risk-return trade-off (or Sharpe ratio) of any possible portfolio.

You cannot gain by stock-picking.

Competition among investors ensures that stock prices are efficient; the only way to earn a higher rate of return is to take more risk.

Portfolio advice

Buy an index fund (like Vangaurd 500)