Discount rates

Class 12
Financial Management, 15.414

Today

Discount rates

- Using the CAPM
- Estimating beta and the cost of capital

Reading

- Brealey and Myers, Chapter 9
- Graham and Harvey (2000, p. 1 - 10)

Review

The CAPM

> Measuring risk A stock's systematic risk is measured by beta, the slope when the stock return is regressed on the market:
$\mathrm{R}_{\mathrm{i}}=\alpha+\beta \mathrm{R}_{\mathrm{M}}+\varepsilon$
$>$ Required returns Investors should be compensated for bearing non-diversifiable, beta risk. The required return on a stock is:

$$
E\left[R_{i}\right]=r_{f}+\beta_{i} E\left[R_{M}-r_{f}\right]
$$

Market risk premium

The risk-return trade-off

Using the CAPM

Valuation

$$
\mathrm{NPV}=\mathrm{CF}_{0}+\frac{\mathrm{CF}_{1}}{(1+\mathrm{r})}+\frac{\mathrm{CF}_{2}}{(1+\mathrm{r})^{2}}+\frac{\mathrm{CF}_{3}}{(1+\mathrm{r})^{3}}+\frac{\mathrm{CF}_{4}}{(1+\mathrm{r})^{4}}+\ldots
$$

Discount rate

The rate of return that investors demand on investments with the same level of risk.

CAPM

$>$ Risk $=$ the project's beta
$>$ Discount rate $=r_{f}+\beta_{\text {project }} E\left[R_{M}-r_{f}\right]$

Using the CAPM

Practical issues

1: How can we estimate the project's beta?
2: What is the riskfree rate and the market risk premium?
3: How does debt affect risk and the cost of capital?
4: Additional risk factors?

Example

It's 1979. Southwest Airlines, a growing start-up, has been profitable as the low-cost airline in the Texas market. Southwest is thinking about expanding to other U.S. cities. Management forecasts that the expansion will cost $\$ 100$ million over the next few years but will lead to strong future growth (\$ millions):

Year	1977	1978	1979	1980	1981	1982
Sales	49.0	81.1	136.1	213.1	270.4	331.2
NI	7.5	17.0	16.7	28.4	34.2	34.0
NWC	5.1	9.7	10.7	12.4	11.1	19.3
CAPX	41.5	45.1	54.5	56.7	79.4	140.2

Growth is expected to slow to 10% annually after 1982.
What cost of capital should Southwest use to evaluate the proposed expansion?

Southwest stock price, 1970-1979

Issue 1

How can we estimate the project's beta?
What factors are important?
$>$ Two approaches
Estimate the firm's beta
Estimate the industry's beta (comparables)
$>$ How much data?
5 - 10 years of monthly data

Estimating beta

1: Estimate the firm's beta
> Advantage
If the project has the same risks as the firm (an expansion), this approach measures exactly what we want
> Disadvantages
Generally not very precise (high standard error)
Firm's beta might change over time
Can't be used for projects in a new line of business or for diversified firms

Southwest

Is this approach useful for SW?
$>$ Is the risk (beta) of the expansion likely to be the same as the beta of the firm?
$>$ Is Southwest's past beta likely to be a useful guide for the future beta of the project?

Southwest, 1973-1979 (84 months)
$R_{s w}=\alpha+\beta_{s w} R_{M}+\varepsilon_{i}$
Estimate: $\beta_{\mathrm{sw}}=\mathbf{1 . 2 5}$ (std error $=0.31$); $\mathbf{R}^{\mathbf{2}} \mathbf{= 0 . 1 6}$
[$R_{M}=$ return on a market index, like S\&P 500]

Southwest vs. Total U.S. market return

Southwest's beta over time

Estimating beta

2: Estimate the industry's beta*
> Advantages
Beta estimated more precisely.
Appropriate if the project is in a new line of business.
$>$ Disadvantages
Do the firm's really have the same risk as the project?
Do they serve different markets? Do they have more debt? Do they have the same cost stucture?

* Estimate the betas of individual firms and then average, or estimate the beta of an industry portfolio.

Southwest

Is this approach useful for SW?
$>$ Is the risk (beta) of the expansion likely to be the same as the beta of other airlines?

Airline betas, 1973-1979

Airline	β	Airline	β
American	1.42	Northwest	1.35
Continental	1.18	United	1.55
Delta	1.30	USAir	1.37

Average $=1.36$, standard error of 0.13

Airline industry vs. Total U.S. market return

Issue 2

Riskfree rate?
$r_{\text {project }}=r_{f}+\beta_{\text {project }} E\left[R_{M}-r_{f}\right]$
Should the riskfree rate be the short-term Tbill rate or the longterm Tbond rate?

Match horizons

If short-lived project, use Tbill rate
If long-lived project, use Tbond rate (say, 10-year)
Riskfree rate changes a lot over time
1979: Tbill rate $=9.65 \%$, Tbond rate $=10.39 \%$
2003: Tbill rate $=0.93 \%$, Tbond rate $=4.31 \%$

Interest rates, 1953-2001

Issue 2

Market risk premium?

$$
r_{\text {project }}=r_{f}+\beta_{\text {project }} E\left[R_{M}-r_{f}\right]
$$

Historical estimates

1872-1999: 5.73\% (std error = 1.63\%)
1926-1999: 8.26\% (std error = 2.24\%)
1963-1999: 6.44\% (std error = 2.51\%)

$$
r=D Y+g
$$

$$
\text { 1872-1999: } 3.64 \% \text { (std error }=1.15 \% \text {) }
$$

Constant growth model
1872-1949: 3.79\% (std error = 1.78\%)
$1950-1999: 3.40 \%$ (std error $=0.99 \%$)

```
P}=\frac{D}{r-g
```

Going forward? My guess, 4-6\%

Market risk premium

Survey of CFOs

Source: Graham and Harvey, 2002

Southwest

Cost of capital

Firm's beta: $\beta_{\mathrm{sw}}=1.25$
Industry's beta: $\beta_{\text {Airines }}=1.36$

$$
\beta \approx 1.30
$$

Riskfree rate $=$ Tbond rate $=10.39 \%$
Market risk premium $=5.0 \%$

Discount rate*

$r=r_{f}+\beta_{\text {project }} E\left[R_{M}-r_{f}\right]=10.39+1.30 \times 5.00=16.89 \%$

* If no debt

Issue 3

Debt financing, part 1

If the firm has debt, the cost of capital (discount rate) is a weighted average of the costs of debt and equity financing.

Cost of equity: $r_{E}=r_{f}+\beta_{E} E\left[R_{M}-r_{f}\right]$
Cost of debt: (1) $r_{D}=r_{f}+\beta_{D} E\left[R_{M}-r_{f}\right]$
(2) $r_{D}=$ yield on the firm's bonds

After-tax weighted average cost of capital
WACC $=\frac{D}{A}(1-\tau) r_{D}+\frac{E}{A} r_{E}$

Balance sheet

Southwest

In 1979, Southwest was financed with 20% debt (debt / firm value). The borrowing rate was 11.4% and the tax rate was 35%. What is Southwest's WACC?
$>$ Cost of equity
$\beta_{E}=1.30 \Rightarrow r_{E}=10.39+1.30 \times 5.00=16.89 \%$
$>$ Weighted-average cost of capital
WACC $=0.20 \times(1-0.35) \times 11.4 \%+0.80 \times 16.89 \%=14.9 \%$
$>$ Discount rate $=14.99 \%$

Issue 3

Debt financing, part 2

If firms have different debt ratios, we cannot directly compare the stock betas of firms in the same industry.

Firms with higher leverage should have riskier equity Higher D/V \rightarrow higher β_{E} Complicates the use of industry betas.
(1) Estimate equity betas for each firm
(2) Calculate r_{E} and WACC for each firm
(3) Use the industry's WACC to estimate the cost of capital for the project

Southwest

Airline industry

Equity betas

Airline	β_{E}	Airline	β_{E}
American	1.42	Northwest	1.35
Continental	1.18	United	1.55
Delta	1.30	USAir	1.37

Leverage ratios

Airline	D/V	Airline	D/V
American	42%	Northwest	22%
Continental	30%	United	37%
Delta	53%	USAir	25%

Southwest

The tax rate is $35 \%, r_{D}=11.4 \%, r_{f}=10.39 \%$, and $E\left[R_{M}-r_{f}\right]=5.0 \%$.

$$
\begin{aligned}
& r_{E}=r_{f}+\beta_{E} E\left[R_{M}-r_{f}\right] \\
& W A C C=\frac{D}{A}(1-\tau) r_{D}+\frac{E}{A} r_{E}
\end{aligned}
$$

Airline	β_{E}	r_{E}	D / A	WACC
American	1.42	17.5%	42%	13.3%
Continental	1.18	16.3	30	13.6
Delta	1.30	16.9	53	11.9
Northwest	1.35	17.1	22	15.0
United	1.55	18.1	37	14.2
USAir	1.37	17.2	25	14.8
Average	1.36	17.2%	35%	$\mathbf{1 3 . 8 \%}$

Issue 4

Multifactor models

Beta might not fully summarize all relevant risks. Additional risk factors could be important.

Measuring risk

Regress R_{i} on macroeconomic risk factors, $\mathrm{F}_{1} \ldots \mathrm{~F}_{\mathrm{K}}$

$$
\mathbf{R}_{\mathrm{i}}=\alpha_{\mathrm{i}}+\beta_{\mathrm{i} 1} \mathrm{~F}_{1}+\beta_{\mathrm{i} 2} \mathrm{~F}_{2}+\ldots+\beta_{\mathrm{iK}} \mathrm{~F}_{\mathrm{K}}+\varepsilon_{\mathrm{i}}
$$

β_{ik} is firm i's sensitivity to the factor.

Expected returns

Expected returns are linearly related to risk

$$
\mathbf{E}\left[\mathbf{R}_{\mathbf{i}}\right]=\gamma_{0}+\gamma_{1} \beta_{\mathrm{i} 1}+\gamma_{2} \beta_{\mathrm{i} 2}+\ldots+\gamma_{\mathrm{N}} \beta_{\mathrm{iN}}
$$

$\gamma_{\mathbf{k}}$ is the risk premium for factor \mathbf{k}.

Multifactor models

Fama-French 3-factor model*

> CAPM misses risk factors associated with size and B / M
$>$ What are the risks?
$\mathrm{R}_{\mathrm{M}}=$ Market portfolio return
SMB = Small stock return - Big stock return
HML = High-B/M stock return - Low-B/M stock return

$$
\begin{aligned}
& \mathbf{R}_{\mathrm{i}}=\alpha_{\mathrm{i}}+\beta_{\mathrm{i}} \mathbf{R}_{\mathrm{M}}+\mathrm{s}_{\mathrm{i}} \mathbf{R}_{\mathrm{SMB}}+\mathbf{h}_{\mathrm{i}} \mathbf{R}_{\text {HML }}+\varepsilon_{\mathrm{i}} \\
& \mathrm{E}\left[\mathbf{R}_{\mathrm{M}}-\mathrm{r}_{\mathrm{f}}\right] \approx 5.0 \%, \quad \mathrm{E}\left[\mathbf{R}_{\text {SMB }}\right] \approx 3.0 \%, \quad \mathrm{E}\left[\mathbf{R}_{\text {HML }}\right] \approx 4.0 \%
\end{aligned}
$$

*http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

Betas, 1960-2001

B/M portfolios			Size portfolios		
Decile	β	R^{2}	Decile	β	R^{2}
Low B/M	1.10	0.88	Smallest	1.33	0.56
2	1.08	0.90	2	1.06	0.73
3	1.05	0.92	3	1.13	0.79
4	0.99	0.89	4	1.14	0.84
5	0.91	0.87	5	1.14	0.86
6	0.86	0.84	6	1.10	0.88
7	0.93	0.76	7	1.04	0.91
8	1.04	0.74	8	1.10	0.93
9	1.16	0.64	9	1.00	0.96
High B/M	1.29	0.54	Largest	0.90	0.97

Southwest Airlines

Cost of capital

```
\(R_{S W}=\alpha+\beta_{S W} R_{M}+s_{S W} R_{S M B}+h_{S W} R_{H M L}+\varepsilon_{i}\)
\(\hat{\beta}_{\text {SW }}=1.123\)
\(\hat{\mathbf{s}}_{\mathrm{sw}}=0.623\)
\(\hat{\mathrm{h}}_{\text {sw }}=0.442\)
```

Cost of equity

$$
r_{E}=10.4+1.123 \times 5.0+0.623 \times 3.0+0.442 \times 4.0=19.7 \%
$$

WACC

$W A C C=0.20 \times(1-0.35) \times 11.4 \%+0.80 \times 19.7 \%=17.2 \%$

