Financing decisions (2)

Class 16
Financial Management, 15.414

Today

Capital structure

- M\&M theorem
- Leverage, risk, and WACC

Reading

- Brealey and Myers, Chapter 17

Financing decisions

Key goal

> Ensure that funds are available for positive NPV projects, now and in the future
> Signaling, taxes, mispricing, issue costs, and corporate control also important

Observations

> Firms follow a pecking order
$>$ Different industries seem to have different target debt ratios
$>$ Stock issues are bad news, but debt issues are either neutral or good news

Financing decisions

Two models

$>$ Pecking-order theory
Firms are worried primarily about selling undervalued shares. They sell equity only when they have no other choice, and there isn't a specific target debt ratio.
$>$ Trade-off theory
Firms care mostly about taxes and distress costs. The tax benefits of debt dominate at low leverage, while distress costs dominate at high leverage. This trade-off leads to an optimal capital structure.

Growth, leverage, and the pecking order

Trade-off theory

Financing decisions

Modigliani-Miller Theorem

Assume

$>$ Efficient markets and no asymmetric information
$>$ No taxes
$>$ No transaction or bankruptcy costs
$>$ Investment decisions don't change
Then
$>$ The value of the firm is independent of its capital structure.
$>$ Financing choices are irrelevant!

Value is created on the left-hand side of the balance sheet, not the right-hand side.

M\&M Theorem

Why is MM useful?

> It tells us what is important ...
Does debt affect investment decisions?
Does debt affect taxes?
Can equity be issued at fair value?
Are transaction costs or bankruptcy costs important?
$>$ And what isn't ... Impact of debt on ROE and risk
Cost of debt relative to the cost of equity (r_{D} vs. r_{E})

MM Theorem, cont.
Message 1 (pie theory)*

* Credit to Yogi Berra

Yogi Berra

Wisdom

>"Nobody goes there anymore; it's too crowded."
> "You should always go to other people's funerals; otherwise, they won't come to yours."
> "The future ain't what it used to be."
$>$ "Baseball is 90% mental -- the other half is physical."

MM Theorem, cont.

Message 2

In general, financial transactions don't create or destroy value as long as securities are sold at fair value.
[Unless they affect taxes, investment decisions, etc.]

Example

Your firm needs to raise $\$ 100$ million. Does it matter whether you decide to issue debt or equity?

Example

Current
Assets
Liab \& Eq

Equity $\$ 800$ million

Issue new debt

MM Theorem, cont.

Message 3

Leverage increases ROE and the expected returns to stockholders, but it also increases risk.

According to M\&M, the two effects offset each other exactly.

$$
\begin{aligned}
& \text { ROE }=\frac{\mathrm{NI}}{\text { Equity }}=\underbrace{\frac{\mathrm{NI}}{\text { Assets }}}_{\text {ROA }} \times \underbrace{\frac{\text { Assets }}{\text { Equity }}}_{\text {Financial leverage }} \frac{\mathrm{E}+\mathrm{D}}{\mathrm{E}} \\
& \text { ROE }=\mathrm{ROA} \times\left[1+\frac{\text { Debt }}{\text { Equity }}\right]
\end{aligned}
$$

MM Theorem, cont.
Leverage and risk

> Asset = Debt + Equity

If $D / E=0 \%$, then $\$ 1$ of equity supports $\$ 1$ of assets
If $D / E=100 \%$, then $\$ 1$ of equity supports $\$ 2$ of assets
If $D / E=900 \%$, then $\$ 1$ of equity supports $\$ 10$ of assets
Leverage magnifies equity risk
$\$ 1$ change in $A \rightarrow \$ 1$ change in $E \quad[E$ is residual claim]
1% change in $A \rightarrow 1 \% \times(A / E)$ change in E

$$
\text { Multiplier }=\frac{\text { Asset }}{\text { Equity }}=\left[1+\frac{\text { Debt }}{\text { Equity }}\right]
$$

[Same multiplier for ROE]

Example

Your firm is all equity financed and has $\$ 1$ million of assets and 10,000 shares of stock (stock price = \$100). Earnings before interest and taxes next year will be either $\$ 50,000, \$ 125,000$, or $\$ 200,000$ depending on economic conditions.

The firm is thinking about a leverage recapitalization, selling $\$ 300,000$ of debt and using the proceeds to repurchase stock. The interest rate is 10%.

How would this transaction affect the firm's EPS and cashflows to stockholders? Ignore taxes.

Current: A = \$1 million; $\mathrm{E}=\$ 1$ million (10,000 shares); $\mathrm{D}=\$ 0$
Recap: $A=\$ 1$ million; $E=\$ 700,000(7,000$ shares $) ; D=\$ 300,000$

Example, cont.
All equity

	Bad	Expected	Good
\# of shares	10,000	10,000	10,000
Debt	$\$ 0$	$\$ 0$	$\$ 0$
EBIT	$\$ 50,000$	$\$ 125,000$	$\$ 200,000$
Interest	0	0	0
Net income	$\$ 50,000$	$\$ 125,000$	$\$ 200,000$
EPS	$\$ 5$	$\$ 12.5$	$\$ 20$

Recapitalization

	Bad	Expected	Good
\# of shares	7,000	7,000	7,000
Debt $(\mathrm{r}=10 \%)$	$\$ 300,000$	$\$ 300,000$	$\$ 300,000$
EBIT	$\$ 50,000$	$\$ 125,000$	$\$ 200,000$
Interest	30,000	30,000	30,000
Net income	$\$ 20,000$	$\$ 95,000$	$\$ 170,000$
EPS	$\$ 2.86$	$\$ 13.57$	$\$ 24.29$

Leverage, EPS, and ROE

Leverage increase risk and expected payoff

MM Theorem, cont.
Leverage and risk
Asset $=$ Debt + Equity
Returns: $\quad r_{A}=\frac{D}{A} r_{D}+\frac{E}{A} r_{E} \quad \rightarrow \quad r_{E}=r_{A}+\frac{D}{E}\left(r_{A}-r_{D}\right)$
Betas: $\quad \beta_{A}=\frac{D}{A} \beta_{D}+\frac{E}{A} \beta_{E} \quad \rightarrow \quad \beta_{E}=\beta_{A}+\frac{D}{E}\left(\beta_{A}-\beta_{D}\right)$
The required return and beta of equity goes up when leverage increases.
$\beta_{A}, \beta_{E}, \beta_{D}$ and leverage

r_{A}, r_{E}, r_{D} and leverage

M\&M Theorem, cont.

Message 4

Leverage shifts the firm towards 'low cost' debt financing, but it also raises the cost of equity.

According to M\&M, the two effects offset each other exactly.
Ignoring tax effects, changing capital structure doesn't affect the WACC.

Without taxes:

$$
\text { WACC }=r_{A}=\frac{D}{A} r_{D}+\frac{E}{A} r_{E} \quad \begin{aligned}
& \text { Combined effect is a wash } \\
& \text { WACC is determined only by asset risk }
\end{aligned}
$$

r_{A}, r_{E}, r_{D} and leverage

Example

Your firm is all equity financed and has $\$ 1$ million of assets and 10,000 shares of stock (stock price $=\$ 100$). Earnings before interest and taxes next year will be either $\$ 50,000, \$ 125,000$, or $\$ 200,000$. These earnings are expected to continue indefinitely. The payout ratio is 100%.

The firm is thinking about a leverage recapitalization, selling $\$ 300,000$ of debt and using the proceeds to repurchase stock. The interest rate is 10%.

How would this transaction affect the firm's EPS and stock price? Ignore taxes.

Example, cont.
All equity

	Bad	Expected	Good
\# of shares	10,000	10,000	10,000
Debt	$\$ 0$	$\$ 0$	$\$ 0$
EBIT	$\$ 50,000$	$\$ 125,000$	$\$ 200,000$
Interest	0	0	0
Net income	$\$ 50,000$	$\$ 125,000$	$\$ 200,000$
EPS	$\$ 5$	$\$ 12.5$	$\$ 20$

Expected EPS = \$12.5
Stock price $=E P S / r_{E} \rightarrow \quad r_{E}=E P S /$ price $=12.5 \%$
$r_{A}=r_{E}$

Example, cont.

Recapitalization

	Bad	Expected	Good
\# of shares	7,000	7,000	7,000
Debt $(\mathrm{r}=10 \%)$	$\$ 300,000$	$\$ 300,000$	$\$ 300,000$
EBIT	$\$ 50,000$	$\$ 125,000$	$\$ 200,000$
Interest	30,000	30,000	30,000
Net income	$\$ 20,000$	$\$ 95,000$	$\$ 170,000$
EPS	$\$ 2.86$	$\$ 13.57$	$\$ 24.29$

Expected EPS = \$13.57
$r_{E}=r_{A}+D / E\left(r_{A}-r_{D}\right)=0.125+(0.3 / 0.7)(0.125-0.10)=0.1357$
Stock price $=\mathrm{EPS} / \mathrm{r}_{\mathrm{E}}=\$ 100$

