

15.414

Today

Options

- Risk management: Why, how, and what?
- Option payoffs

Reading

- Brealey and Myers, Chapter 20, 21
- Sally Jameson

Types of questions

- Your company, based in the U.S., supplies machine tools to manufacturers in Germany and Brazil. Prices are quoted in each country's currency, so fluctuations in the € / \$ and R / \$ exchange rate have a big impact on the firm's revenues. How can the firm hedge these risks? Should it?
- Your firm is thinking about issuing 10-year convertible bonds. In the past, the firm has issued straight debt with a yield-to-maturity of 8.2%. If the new bonds are convertible into 20 shares of stocks, per \$1,000 face value, what interest rate will the firm have to pay on the bonds? Why?
- You have the opportunity to purchase a mine that contains 1 million kgs of copper. Copper has a price of \$2.2 / kg, mining costs are \$2 / kg, and you have the option to delay extraction one year. How much is the mine worth?

Exchange rates, 1995 – 2003

Example

Caterpillar

Solution Soluti Solution Solution Solution Solution Solution Solution So

> In 1980s, dollar up, then down 50%

Year	1980	1984	1988
Sales	\$8,598	\$6,576	\$10,435
Net income	565	-428	616
Cap exp	749	234	793

\$ millions

\$ exchange rate, 1980 – 2000

15.414

Risk management

What is the goal?

How can firms create value through risk management?

> View 1: Hedging is irrelevant (M&M)

Purely financial transaction Diversified shareholders don't care about firm-specific risks

> View 2: Hedging creates value

Helps ensure that cash is available for positive NPV investments Reduces dependence on external finance Reduces probability of financial distress Improves performance evaluation and compensation Other benefits: reduce taxes, undiversified shareholders

Class 18

Why hedge?

Three gold producers

> Homestake Mining

Does not hedge because "shareholders will achieve maximum benefit from such a policy."

> American Barrick

Hedges aggressively to give the company "extraordinary financial stability... offering investors a predictable, rising earnings profile in the future."

Battle Mountain Gold

Hedges up to 25% because "a recent study indicates that there may be a premium for hedging."

Derivative use

Evidence

> Random sample of 413 large firms

Average cashflow from operations = \$735 million Average PP&E = \$454 million Average net income = \$318 million

> How much hedging?

57% of firms use derivatives in 1997

For derivative users, if 3σ event, then cashflows up by \$15 million and market value up by \$31 million

15.414

Financial derivatives

> Options

Gives the holder the right to buy (call option) or sell (put option) an asset at a specified price. Buyer has the choice

> Forwards and futures

A contract to exchange an asset in the future at a specified price and time. Obligation for both

> Swaps

An agreement to exchange a series of cashflows at specified prices and times. Obligation for both

Financial derivatives

Class 18

Assets

> Financial assets

Stocks, bonds, stock indices, Tbonds (interest rates), foreign exchange

> Commodities

Oil, gold, silver, corn, soybeans, OJ, pork bellies, coffee

> Other events and prices

Electricity, weather, etc.

> Imbedded options

Convertible bonds, warrants, real options, mortgages

Futures contract

On Thursday, the NYM traded natural gas futures with delivery in August 2004 at a price of 4.900 \$ / MMBtu.

- Buyer has a 'long' position Wins if prices go up
- Seller has a 'short' position Wins if prices go down
- The price of the contract is zero No cash changes hands today

Futures contract: Payoff diagram

Option contract

Thursday, the CBOE traded 4,258 call option contracts (100 shares each) on Cisco stock with a **strike price** of \$20.00 and an expiration date in October. The option price is \$0.30.

- > Buyer has the right to buy Cisco at \$20 Option will be exercised if Cisco > \$20
- Seller is said to 'write' the option
- > American options can be exercised anytime on or before the maturity date.
- > European options can be exercised *only on* the maturity date.
- Out of the money if the stock price is lower than the strike price. In the money if the stock price is greater than the strike price.

WSJ option quotes

				Ca	all	Pı	ıt
Ор	otion/S	Strike	Exp	Vol	Last	Vol	Last
Cis	5C0	15	Jan	4128	3.60	25	0.70
1	7.83	17.50	Aug	5307	0.40	4410	0.15
1	7.83	20	Oct	4258	0.30	100	2.60
					•		
Stocl	k pri	ce		Ca	all price		Put

Call option: Payoff diagram

Class 18

Option payoffs (strike = \$50)

Options

Option payoffs

Asset price = S, strike price = X

Buyer of the option

	S < X	S > X
Call	0	S – X
Put	X – S	0

Risky if used alone

Returns, stock vs. option

Option strategies

Financial engineering

Options can be mixed in various ways to create an unlimited number of payoff profiles.

Examples

- > Buy a stock and a put
- > Buy a call with one strike price and sell a call with another
- > Buy a call and a put with the same strike price

Option strategies: Stock + put

Option strategies: Call₁ – call₂

Option strategies: Call + Put

15.414

Option pricing

What is an option worth?

How can we estimate the expected cashflows? How risky is an option? What is the appropriate discount rate?

Two formulas to know

- > Put-call parity
- > Black-Scholes formula

15.414

Put-call parity

Relation between put and call prices

P + S = C + PV(X)

S = stock price P = put price C = call price X = strike price PV(X) = present value of $X = X / (1+r)^{t}$ r = riskfree rate

Option strategies: Stock + put

Option strategies: Tbill + call

Example

On Thursday, call options on Cisco stock with an expiration date in October and a strike price of \$20 sold for \$0.30. The current price of Cisco is \$17.83. How much should put options with the same strike price and expiration date sell for?

Put-call parity

P = C + PV(X) - S

C = \$0.30, S = \$17.83, X = \$20.00

r = 1% annually $\rightarrow 0.15\%$ over the life of the option

Put option = 0.30 + 20 / 1.0015 - 17.83 = \$2.44

(WSJ price = \$2.60)

Option pricing

Factors affecting option prices

Option prices depend on S, X, T, σ^2 , r, D

	Call option	Put option
Stock price (S)	+	_
Exercise price (X)	_	+
Time-to-maturity (T)	+	+
Stock volatility (σ)	+	+
Interest rate (r)	+	_
Dividends (D)	_	+

Class 18