Quiz On The Day Before Lecture \# 9
Arbitrage Pricing Theory

Suppose that there are two independent economic factors F1 and F2. The risk-free rate is 6%, and all stocks have independent firm-specific components with a standard deviation of 45%. The following are well-diversified portfolios:

Portfolio Beta on $\mathrm{F}_{1} \quad$ Beta on $\mathrm{F}_{2} \quad$ Expected Return

A	1.5	2.0	31
B	2.2	-0.2	27

Table 1: Scenarios for 2 stocks with 2 Factors

What is the expected return-beta relationship in this economy?

Solution
BKM ch. 11, p. 335 \# 2

$$
E\left(r_{p}\right)=r_{f}+\beta_{1, p}\left[E\left(r_{1}\right)-r_{f}\right]+\beta_{2, p}\left[E\left(r_{2}\right)-r_{f}\right]
$$

We need to find the risk premium [rp] for each of the two factors:
$\mathrm{rp}_{1}=\left[\mathrm{E}\left(\mathrm{r}_{1}\right)-\mathrm{r}_{\mathrm{f}}\right]$ and
$\mathrm{rp}_{2}=\left[\mathrm{E}\left(\mathrm{r}_{2}\right)-\mathrm{r}_{\mathrm{f}}\right]$
To do so, the following system of two equations with to unknowns must be solved:
$21=6+1.5 \mathrm{xrp}_{1}+2.0 \mathrm{x} \mathrm{rp}_{2}$
$27=6+2.2 \mathrm{xrp}_{1}+(-0.2) \mathrm{xrp}_{2}$
The solution to this set of equation is
$\mathrm{rp}_{1}=10 \%$ and $\mathrm{rp}_{2}=5 \%$
Thus, the expected return-beta relationship is:

$$
E\left(r_{p}\right)=6 \%+\beta_{1, p} \cdot 10 \%+\beta_{2, p} \cdot 5 \%
$$

