Quiz For Lecture \# 10

Question 1)

Consider the regression equation:

$$
\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{f}}=\mathrm{g}_{0}+\mathrm{g}_{1} \mathrm{~b}_{\mathrm{i}}+\mathrm{g}_{2} \sigma_{\mathrm{ei}}^{2}+\mathrm{e}_{\mathrm{it}}
$$

where:
$r_{i}-r_{t}=$ the average difference between the monthly return on stock i and the monthly risk-free rate
$\mathrm{b}_{\mathrm{i}}=$ the beta of stock i
$\sigma^{2}{ }_{\mathrm{ei}}=$ a measure of the nonsystematic variance of the stock i.
If you estimated this regression equation and the CAPM was valid, you would expect the estimated coefficient, g^{2} to be
A) 0
B) 1
C) equal to the risk-free rate of return
D) equal to the average difference between the monthly return on the market portfolio and the monthly risk-free rate
E) none of the above

Ans:

Question 2)

Consider a well-diversified portfolio, A, in a two-factor economy. The risk-free rate is 6%, the risk premium on the first factor portfolio is 4% and the risk premium on the second factor portfolio is 3%. If portfolio A has a beta of 1.2 on the first factor and .8 on the second factor, what is its expected return?
A) 7.0%
B) 8.0%
C) $\quad 9.2 \%$
D) 13.0%
E) 13.2%

Ans:

Question 3)

Security A has a beta of 1.0 and an expected return of 12%. Security B has a beta of 0.75 and an expected return of 11%. The risk-free rate is 6%. Explain the arbitrage opportunity that exists; explain how an investor can take advantage of it. Give specific details about how to form the portfolio, what to buy and what to sell.

Ans:

