Handout: Crossing Probabilities of the Brownian Motion

Consider the process $X_{t}, d X_{t}=\sigma d Z_{t}$. Assume that $X_{0}=0$. We want to compute the probability that X_{t} reaches $a>0$ before reaching $-b<0$. Let $f\left(X_{t}\right)$ denote such probability, conditional on the starting value X_{t} at time t. Note that f does not depend on time explicitly.

By definition of $f\left(X_{t}\right)$ as the probability of hitting the upper boundary first,

$$
f\left(X_{t}\right)=\mathrm{E}_{t}\left[f\left(X_{t+d t}\right)\right]
$$

and therefore $f(X)$ satisfies the Kolmogorov backward equation

$$
\frac{1}{2} \sigma^{2} \frac{\partial^{2} f}{\partial X^{2}}=0
$$

Note that there are no other terms in this equation, since f does not depend on time explicitly, and X_{t} has zero drift. The equation $f^{\prime \prime}(X)=0$ has a general solution

$$
f(X)=A(x+b)
$$

Note that in addition to solving the PDE, function $f(X)$ must satisfy the boundary conditions

$$
f(a)=1, \quad f(-b)=0
$$

These conditions follow from the definition of f as the probability of reaching the upper boundary first. With these boundary conditions, we find

$$
f(X)=\frac{x+b}{a+b}
$$

MIT OpenCourseWare
http://ocw.mit.edu

15.450 Analytics of Finance

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

