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Brownian Motion


Consider a random walk xt+nΔt with equally likely increments of ±
√
Δt . 

Let the time step of the random walk shrink to zero: Δt 0.→ 

The limit is a continuous-time process called Brownian motion, which we 
denote Zt , or Z (t). 

We always set Z0 = 0. 

Brownian motion is a basic building block of continuous-time models. 
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Properties of Brownian Motion


Brownian motion has independent increments: if t < t � < t ��, then Zt � − Zt is 
independent of Zt �� − Zt � . 

Increments of the Brownian motion have normal distribution with zero mean, 
and variance equal to the time interval between the observation points 

Zt � − Zt ∼ N(0, t � − t) 

Thus, for example,

Et [Zt � − Zt ] = 0


Intuition: Central Limit Theorem applied to the random walk. 

Trajectories of the Brownian motion are continuous. 

Trajectories of the Brownian motion are nowhere differentiable, therefore 
standard calculus rules do not apply. 
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Ito Integral


Ito integral, also called the stochastic integral (with respect to the Brownian 
motion) is an object � t 

σu dZu 
0 

where σu is a stochastic process. 

Important: σu can depend on the past history of Zu , but it cannot depend on 
the future. σu is called adapted to the history of the Brownian motion. 

Consider discrete-time approximations 

N� t 
σ(i−1)Δt (ZiΔt − Z(i−1)Δt ), Δt = 

N 
i=1 

and then take the limit of N ∞ (the limit must be taken in the →
mean-squared-error sense). 

The limit is well defined, and is called the Ito integral. 
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Properties of Itô Integral 

Itô integral is linear � t � t � t 

(au + c × bu ) dZu = au dZu + c bu dZu 
0 0 0 �tXt = 0 σu dZu , is continuous as a function of time. 

Increments of Xt have conditional mean of zero (under some technical

restrictions on σu ):


Et [Xt � − Xt ] = 0, t � > t
��T 
� ��T 

� 
Note: a sufficient condition for Et t σu dZu = 0 is E0 0 σ

2 
u du < ∞. 

Increments of Xt are uncorrelated over time. 
If σt is a deterministic function of time and 

�
0 
t 
σ2 du < ∞, then Xt is normally u 

distributed with mean zero, and variance � t 
E0[Xt 

2] = σu 
2 du 

0 
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Itô Processes


An Itô process is a continuous-time stochastic process Xt , or X (t), of the form � t � t 

µu du + σu dZu 
0 0 

µu is called the instantaneous drift of Xt at time u, and σu is called the

instantaneous volatility, or the diffusion coefficient.


µt dt captures the expected change of Xt between t and t + dt . 

σt dZt captures the unexpected (stochastic) component of the change of Xt 

between t and t + dt . 

Conditional mean and variance: 

Et (Xt+dt − Xt ) = µt dt + o(dt), Et (Xt+dt − Xt )
2 = σt 

2 dt + o(dt) 
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Quadratic Variation 

Consider a time discretization


0 = t1 < t2 < ... < tN = T , max |tn+1 − tn| < Δ

n=1,...,N−1 

Quadratic variation of an Itô process X (t) between 0 and T is defined as 

N−1

[X ]T = lim |X (tn+1) − X (tn)|2 

Δ 0→ n=1 

For the Brownian motion, quadratic variation is deterministic: 

[Z ]T = T 

To see the intuition, consider the random-walk approximation to the Brownian 
motion: each increment equals 

√
tn+1 − tn in absolute value. 
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Quadratic Variation 

Quadratic variation of an Itô process � t � t


Xt = µu du + σu dZu

0 0 

is given by �T 

[X ]T = σ2 
t dt 

0 

Heuristically, the quadratic variation formula states that 

(dZt )
2 = dt , dt dZt = o(dt), (dt)2 = o(dt) 

Random walk intuition: 

|dZt | = 
√

dt , |dt dZt | = (dt)3/2 = o(dt), dZt 
2 = dt 

Conditional variance of the Itô process can be estimated by approximating its 
quadratic variation with a discrete sum. This is the basis for variance 
estimation using high-frequency data. 
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Itô’s Lemma


Itô’s Lemma states that if Xt is an Itô process, � t � t


Xt = µu du + σu dZu

0 0 

then so is f (t , Xt ), where f is a sufficiently smooth function, and 

df (t , Xt ) = 
∂f (t , Xt )

+ 
∂f (t , Xt ) 

µt + 
1 ∂2f (t , Xt ) 

σ2 
t dt + 

∂f (t , Xt ) 
σt dZt

∂t ∂Xt 2 ∂Xt 
2 ∂Xt 

Itô’s Lemma is, heuristically, a second-order Taylor expansion in t and Xt , 
using the rule that 

(dZt )
2 = dt , dt dZt = o(dt), (dt)2 = o(dt) 
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Itô’s Lemma


Using the Taylor expansion, 

df (t , Xt ) ≈ 
∂f (

∂

t , 
t
Xt ) dt + 

∂f (
∂

t
X
, X

t 

t ) dXt + 
2
1 ∂2f 

∂

(t
t
, 
2 

Xt ) dt2 

+ 
2
1 ∂2f 

∂

(

X
t , 

t 
2 

Xt )
(dXt )

2 + 
∂2

∂

f
t
(

∂

t , 
X
X

t 

t ) dt dXt 

∂f (t , Xt ) ∂f (t , Xt ) ∂f (t , Xt ) 
= dt + µt dt + σt dZt

∂t ∂Xt ∂Xt 

+ 
2
1 ∂2f 

∂

(

X
t , 

t 
2 

Xt ) 
σ2 

t dt + o(dt) 

Short-hand notation 

df (t , Xt ) = 
∂f (

∂

t , 
t
Xt ) dt + 

∂f (
∂

t
X
, X

t 

t ) dXt + 
2
1 ∂2f 

∂

(

X
t , 

t 
2 

Xt )
(dXt )

2 
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Itô’s Lemma 
Example 

Let Xt = exp(at + bZt ). 

We can write Xt = f (t , Zt ), where


f (t , Zt ) = exp(at + bZt )


Using 

∂f (t , Zt )
= af (t , Zt ), 

∂f (t , Zt )
= bf (t , Zt ), 

∂2f (t , Zt )
= b2f (t , Zt )

∂t ∂Zt ∂Zt 
2 

Itô’s Lemma implies 

b2 

dXt = a + Xt dt + bXt dZt2 

Expected growth rate of Xt is a + b2/2. 
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The Black-Scholes Model of the Market


Consider the market with a constant risk-free interest rate r and a single risky 
asset, the stock. 
Assume the stock does not pay dividends and the price process of the stock 
is given by �� � � 

St = S0 exp µ − 
1 
σ2 t + σZt2 

Because Brownian motion is normally distributed, using

E0[exp(Zt )] = exp(t/2), find


E0[St ] = S0 exp(µt) 

Using Itô’s Lemma (check) 

dSt 
= µ dt + σ dZtSt 

µ is the expected continuously compounded stock return, σ is the volatility of 
stock returns. 
Stock returns have constant volatility. 
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Dynamic Trading


Consider a trading strategy with continuous rebalancing. 

At each point in time, hold θt shares of stocks in the portfolio. 

Let the portfolio value be Wt . Then Wt − θtSt dollars are invested in the 
short-term risk-free bond. 

Portfolio is self-financing: no exogenous incoming or outgoing cash flows. 

Portfolio value changes according to 

dWt = θt dSt + (Wt − θtSt )r dt 

Discrete-time analogy 

Bt+ΔtWt+Δt − Wt = θt (St+Δt − St ) + (Wt − θtSt ) − 1
Bt 

c� Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 17 / 74 



Stochastic Integral Itô’s Lemma Black-Scholes Model Multivariate Itô Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing 

Option Replication


Consider a European option with the payoff H(ST ). 

We will construct a self-financing portfolio replicating the payoff of the option. 

Look for the portfolio such that 

Wt = f (t , St ) 

for some function f (t , St ). 

By Law of One Price, f (t , St ) must be the price of the option at time t , being 
the cost of a trading strategy with an identical payoff. 

Note that the self-financing condition is important for the above argument: we 
do not want the portfolio to produce intermediate cash flows. 
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Option Replication 

Apply Itô’s Lemma to portfolio value, Wt = f (t , St ): 

∂f ∂f 1 ∂2f
dWt = θt dSt + (Wt − θtSt )r dt = 

∂t 
dt + 

∂St 
dSt + 

2 ∂St 
2 (dSt )

2 

where (dSt )
2 = σ2St 

2 dt 
The above equality holds at all times if 

θt = 
∂f (
∂

t
S
, S

t 

t ) 
, 

∂f (
∂

t , 
t
St )

+ 
2
1 ∂2f 

∂

(

S
t , 

t 
2 

St ) 
σ2St 

2 − r f (t , St ) − 
∂

∂

S
f

t 
St = 0 

If we can find the solution f (t , S) to the PDE


∂f (t , S) ∂f (t , S) 1 
σ2S2 ∂

2f (t , S)

−r f (t , S) + + rS + = 0 

∂t ∂S 2 ∂S2 

with the boundary condition f (T , S) = H(S), then the portfolio with 

∂f (t , St )W0 = f (0, S0), θt = 
∂St 

replicates the option! 
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Black-Scholes Option Price 

We conclude that the option price can be computed as a solution of the 
Black-Scholes PDE 

∂f ∂f 1 ∂2f 
−r f + + rS + σ2S2 = 0 

∂t ∂S 2 ∂S2 

If the option is a European call with strike K , the PDE can be solved in closed 
form, yielding the Black-Scholes formula: 

C(t , St ) = StN(z1) − exp(−r(T − t))KN(z2), 

where N(.) is the cumulative distribution function of the standard normal 
distribution, � � � � 

log S
K

t + r + 2
1 σ2 (T − t) 

z1 = , 
σ
√

T − t 
and 

z2 = z1 − σ
√

T − t . 

Note that µ does not enter the PDE or the B-S formula. This is intuitive from 
the perspective of risk-neutral pricing. Discuss later. 
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Black-Scholes Option Replication


The replicating strategy requires holding 

∂f (t , St )
θt = 

∂St 

stock shares in the portfolio. θt is called the option’s delta. 
It is possible to replicate any option in the Black-Scholes setting because 

Price of the stock St is driven by a Brownian motion; 
Rebalancing of the replicating portfolio is continuous; 
There is a single Brownian motion affecting the payoff of the option and the price 
of the stock. More on this later, when we cover multivariate Itô processes. 

c� Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 21 / 74 



Stochastic Integral Itô’s Lemma Black-Scholes Model Multivariate Itô Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing 

Single-Factor Term Structure Model


Consider a model of the term structure of default-free bond yields. 

Assume that the short-term interest rate follows 

drt = α(rt ) dt + β(rt ) dZt 

Let P(t , τ) denote the time-t price of a discount bond with unit face value 
maturing at time τ. 

We want to construct an arbitrage-free model capturing, simultaneously, the 
dynamics of bond prices of many different maturities. 
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Single-Factor Term Structure Model 

Assume that bond prices can be expressed as a function of the short rate 
only (single-factor structure) 

P(t , τ) = f (t , rt , τ) 

Itô formula implies that 

dP(t , τ) = 
∂f 

+ 
∂f 

α(rt ) + 
1 ∂2f 

β2(rt ) dt + 
∂f 

β(rt ) dZt
∂t ∂r 2 ∂r2 �∂r �� � 

στ 
µτ 

t t 

Consider a self-financing portfolio which invests P(t , τ)/στ 
t dollars in the 

bond maturing at τ, and −P(t , τ �)/στ
t 

� 
dollars in the bond maturing at τ �. 

Self-financing requires that the investment in the risk-free short-term bond is 

Wt − 
P(

σ

t
τ 

, τ)
+ 

P(

σ

t , 
τ

τ
� 

�) 

t t 
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Single-Factor Term Structure Model 

Portfolio value evolves according to 

dWt = Wt − 
P(

σ

t , 
τ 

τ)
+ 

P(

σ

t , 
τ

τ
� 

�) 
rt + 

σ

µ
τ 
t 
τ 

− 
µ

στ
t 
τ

�

� 

dt+ 
t t t t 

στ στ� 

t t− dZt
στ στ� 

t t 

= Wt − 
P(

σ

t , 
τ 

τ)
+ 

P(

σ

t , 
τ

τ
� 

�) 
rt + 

σ

µ
τ 
t 
τ 

− 
µ

σ
t 
τ

τ

�

� 

dt 
t t t t 

Portfolio value changes are instantaneously risk-free. 

To avoid arbitrage, the portfolio value must grow at the risk-free rate: 

Wt − 
P(

σ

t , 
τ 

τ)
+ 

P(

σ

t , 
τ

τ
� 

�) 
rt + 

µ

σ
t 
τ

τ − 
µ

στ
t 
τ�

� = Wtrt 
t t t t 
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Single-Factor Term Structure Model 

We conclude that 

µt 
τ − rtP(t , τ)

= 
µt 
τ� 

− rtP(t , τ �) 
, for any τ and τ � 

στ στ� 

t t 

Assume that, for some τ �,


µt 
τ� 

− rtP(t , τ �)

= η(t , rt )

στ� 

t 

Then, for all bonds, must have 

µt 
τ − rtP(t , τ) = η(t , rt )σ

τ 
t 

Recall the definition of µt 
τ , στ 

t to derive the pricing PDE on P(t , τ) = f (t , rt , τ) 

∂f ∂f 1 ∂2f ∂f 
+ α(r) + β2(r) − rf = η(t , r)β(r) , f (τ, r , τ) = 1 

∂t ∂r 2 ∂r2 ∂r 

The solution, indeed, has the form f (t , r , τ). 
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Single-Factor Term Structure Model


What if 
µτ 

t − rt P(t , τ) 
στ 

t 
�= η(t , rt ) 

for any function η, i.e., the LHS depends on something other than rt and t? 
Then the term structure will not have a single-factor form.


We have seen that, for each choice of η(t , rt ), absence of arbitrage implies

that bond prices must satisfy the pricing PDE.


The reverse is true: if bond prices satisfy the pricing PDE (with well-behaved 
η(t , rt )), there is no arbitrage (show later, using risk-neutral pricing). 

The choice of η(t , rt ) determines the joint arbitrage-free dynamics of bond 
prices (yields). 

η(t , rt ) is the price of interest rate risk. 

c� Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 26 / 74 



Stochastic Integral Itô’s Lemma Black-Scholes Model Multivariate Itô Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing 

Outline 

1 Stochastic Integral 

2 Itô’s Lemma 

3 Black-Scholes Model 

4 Multivariate Itô Processes 

5 SDEs 

6 SDEs and PDEs 

7 Risk-Neutral Probability 

8 Risk-Neutral Pricing 

c Stochastic Calculus 27 / 74 � Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010 



� 

Stochastic Integral Itô’s Lemma Black-Scholes Model Multivariate Itô Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing 

Multiple Brownian motions 

Consider two independent Brownian motions Zt 
1 and Zt 

2. Construct a third 
process �


Xt = ρZt 
1 + 1 − ρ2Zt 

2


Xt is also a Brownian motion: 
Xt has IID normal increments; 
Xt is continuous. 

Xt and Zt 
1 are correlated: � �


E0 XtZt 
1 = ρt


Correlated Brownian motions can be constructed from uncorrelated ones, 
just like with normal random variables. 
Cross-variation 

N−1

[Zt 
1 , Zt 

2]T = lim (Z 1(tn+1) − Z 1(tn)) × (Z 2(tn+1) − Z 2(tn)) = 0 
Δ 0→ n=1 

Short-hand rule 
dZt 

1 dZt 
2 = 0 dZt 

1 dXt = ρ dt⇒ 

c� Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 28 / 74 



Stochastic Integral Itô’s Lemma Black-Scholes Model Multivariate Itô Processes SDEs SDEs and PDEs Risk-Neutral Probability Risk-Neutral Pricing 

Multivariate Itô Processes


A multivariate Itô process is a vector process with each coordinate driven by 
an Itô process. 

Consider a pair of processes 

dXt =µt
X dt + σX

t dZt
X , 

dYt =µt
Y dt + σY

t dZt
Y , 

dZt
X dZt

Y =ρt dt 

Itô’s formula can be extended to multiple process as follows: 

∂f ∂f ∂f
df (t , Xt , Yt ) = dt + dXt + dYt + 

∂t ∂Xt ∂Yt 

1 ∂2f 1 ∂2f ∂2f 
(dXt )

2 + (dYt )
2 + dXt dYt2 ∂Xt 

2 2 ∂Yt 
2 ∂Xt ∂Yt 
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Example of Itô’s formula


Consider two asset price processes, Xt and Yt , both given by Itô processes 

dXt = µ Xt dt + σX
t dZt

X 

dYt = µt
Y dt + σY

t dZt
Y 

dZt
X dZt

Y = 0 

Using Itô’s formula, we can derive the process for the ratio ft = Xt /Yt (use 
f (X , Y ) = X/Y ): � �2dft dXt dYt dXt dYt dYt 

= − − +
ft Xt Yt Xt Yt Yt� � �2 � 

X Y σY σX σY


= 
µt − 

µt + t dt + t dZt
X − t dZt

Y


Xt Yt Yt 
2 Xt Yt
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Example of Itô’s formula 

We find that the expected growth rate of the ratio Xt /Yt is � 
X Y 

� 
σY 
�2 � 

µt µt t− +
Xt Yt Yt 

2 

Assume that µt
X = µt

Y . Then, � 
dft 
� � 

σY
t 

�2 

Et = dt
ft Yt 

2 

Repeating the same calculation for the inverse ratio, ht = Yt /Xt , we find � � � �2 

Et 
dht 

= 
σt

X 

dt
ht Xt 

2 

It is possible for both the ratio Xt /Yt and its inverse Yt /Xt to be expected to 
grow at the same time. Application to FX. 
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Stochastic Differential Equations 

Example: Heston’s stochastic volatility model 

dSt 
=µ dt + 

√
vt dZ S 

St 
t 

dvt =− κ(vt − v) dt + γ
√

vt dZt
v 

dZt
S dZt

v =ρ dt 

Conditional variance vt is described by a Stochastic Differential Equation. 

Definition (SDE) 
The Itô process Xt satisfies a stochastic differential equation 

dXt = µ(t , Xt ) dt + σ(t , Xt ) dZt 

with an initial condition X0 if it satisfies 

Xt = X0 + 
� t 

0 
µ(s, Xs) ds + σ(s, Xs) dZs. 
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Existence of Solutions of SDEs


Assume that for some C, D > 0


|µ(t , X )| + |σ(t , X )| � C(1 + |X |)


and 
|µ(t , X ) − µ(t , Y )| + |σ(t , X ) − σ(t , Y )| � D|X − Y | 

for any X and Y (Lipschitz property). 

Then, the SDE 

dXt = µ(t , Xt ) dt + σ(t , Xt ) dZt , X0 = x , 

has a unique continuous solution Xt . 
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Common SDEs 
Arithmetic Brownian Motion 

The solution of the SDE 
dXt = µ dt + σ dZt 

is given by 
Xt = X0 + µt + σZt . 

The process Xt is called an arithmetic Brownian motion, or Brownian motion 
with a drift. 

Guess and verify. 

We typically reduce an SDE to a few common cases with explicit solutions. 
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Common SDEs 
Geometric Brownian Motion 

Consider the SDE 
dXt = µXt dt + σXt dZt 

Define the process

Yt = ln(Xt ).


By Itô’s Lemma, 

dYt = 
X
1 

t 
µXt dt + 

X
1 

t 
σXt dZt + 

1
2 
(−

X 
1 

t 
2 )σ

2Xt 
2 dt = (µ − σ2/2) dt + σ dZt . 

Yt is an arithmetic Brownian motion, given in the previous example, and 

Yt = Y0 + (µ − σ2/2)t + σZt . 

Then � �

Xt = eYt = X0 exp (µ − σ2/2)t + σZt
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Common SDEs 
Ornstein-Uhlenbeck process 

The mean-reverting Ornstein-Uhlenbeck process is the solution Xt to the 
stochastic differential equation 

dXt = (X − Xt ) dt + σ dZt 

We solve this equation using et as an integrating factor. 
Setting Yt = et and using Itô’s lemma for the function f (X , Y ) = X Y , we find 

d(etXt ) = et (X dt + σ dZt ).


Integrating this between 0 and t , we find
� t � t 

etXt − X0 = esXds + esσdZs, 
0 0 

i.e., � t


Xt = e−tX0 + (1 − e−t )X + σ es−t dZs.

0 
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Option Replication in the Heston Model


Assume the Heston stochastic-volatility model for the stock. 

Attempt to replicate the option payoff with the stock and the risk-free bond. 

Can we find a trading strategy that would guarantee perfect replication? 

It is possible to replicate an option using a bond, a stock, and another option. 
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Recap of APT 

Recall the logic of APT. 
Suppose we have N assets with two-factor structure in their returns: 

Rt
i = ai + bi 

1Ft 
1 + bi 

2Ft 
2 

Interest rate is r . 
While not stated explicitly, all factor loadings may be stochastic. 
Unlike the general version of the APT, we assume that returns have no 
idiosyncratic component. 
At time t , consider any portfolio with fraction θi in each asset i that has zero 
exposure to both factors: 

b1
1θ1 + b1

2θ2 + ... + b1 
N θN = 0 

b2
1θ1 + b2

2θ2 + ... + b2 
N θN = 0 

This portfolio must have zero expected excess return to avoid arbitrage 

θ1 Et [Rt 
1] − r + θ2 Et [Rt 

2] − r + ... + θN Et [Rt
N ] − r = 0 
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Recap of APT 

To avoid arbitrage, any portfolio satisfying 

b1
1θ1 + b1

2θ2 + ... + b1 
N θN = 0 

b2
1θ1 + b2

2θ2 + ... + b2 
N θN = 0 

must satisfy 

θ1 Et [Rt 
1] − r + θ2 Et [Rt 

2] − r + ... + θN Et [Rt
N ] − r = 0 

Restating this in vector form, any vector orthogonal to 

(b1
1 , b1

2 , ..., b1 
N ) and (b2

1 , b2
2 , ..., b2 

N ) 

must be orthogonal to (Et [Rt 
1] − r , Et [Rt 

2] − r , ..., Et [Rt
N ] − r). 

Conclude that the third vector is spanned by the first two: there exist 
constants (prices of risk) (λ1 

t , λ
2 
t ) such that


Et [Rt
i ] − r = λ1 

t b1 
i + λt 

2b2
i , i = 1, ..., N
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Option Pricing in the Heston Model 

Suppose there are N derivatives with prices given by 

f i (t , St , vt )


where the first option is the stock itself: f 1(t , St , vt ) = St .


Using Ito’s lemma, their prices satisfy 

df i (t , St , vt ) = ai
tdt + 

∂f i (t , St , vt ) dSt + 
∂f i (t , St , vt ) dvt

∂St ∂vt 

Compare the above to our APT argument 

Conclude that there exist λS
t and λv

t such that 

E 
� 
df i (t , St , vt ) − rf i (t , St , vt ) dt 

� 
= 

∂f i (t
∂

, 
S
S

t

t , vt ) 
λt

S dt + 
∂f i (t

∂

, 
v
S

t

t , vt ) 
λt

v dt 

We work with price changes instead of returns, as we did in the APT,

because some of the derivatives may have zero price.
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Option Pricing in the Heston Model 

The APT pricing equation, applied to the stock, implies that 

E [dSt − rSt dt ] = (µ − r)St dt = λt
S dt 

λv
t is the price of volatility risk, which determines the risk premium on any 

investment with exposure to dvt . 
Writing out the pricing equation explicitly, with the Ito’s lemma providing an 
expression for E df i (t , St , vt ) , 

∂f i ∂f i ∂f i 

+ µS + (−κ)(v − v)+
∂t ∂S ∂v 

1 ∂2f i 1 ∂2f i ∂2f i ∂f i ∂f i 

vS2 + γ2v + ργSv − rf i = (µ − r)S + λv 

2 ∂S2 2 ∂v2 ∂S∂v ∂S ∂v t 

As long as we assume that the price of volatility risk is of the form 

λv = λv (t , St , vt )t 

the assumed functional form for option prices is justified and we obtain an

arbitrage-free option pricing model.
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Numerical Solution of SDEs


Except for a few special cases, SDEs do not have explicit solutions. 

The most basic and common method of approximating solutions of SDEs 
numerically is using the first-order Euler scheme. 

Use the grid ti = iΔ. 

Xi+1 = Xi + µ(ti , Xi ) Δ + σ(ti , Xi ) 
√
Δ�εi , 

where �εi are IID N(0, 1) random variables. 

Using a binomial distribution for �εi , with equal probabilities of ±1, is also a 
valid procedure for approximating the distribution of Xt 
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Moments of Diffusion Processes


Often need to compute conditional moments of diffusion processes: 

Expected returns and variances of returns on financial assets over finite time 
intervals; 
Use the method of moments to estimate a diffusion process from discretely 
sampled data; 
Compute prices of derivatives. 

One approach is to reduce the problem to a PDE, which can sometimes be 
solved analytically. 
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Kolmogorov Backward Equation 

Diffusion process Xt with coefficients µ(t , X ) and σ(t , X ). 
Objective: compute a conditional expectation 

f (t , X ) = E [g(XT )|Xt = X ] 

Suppose f (t , X ) is a smooth function of t and X . By the law of iterated 
expectations, 

f (t , Xt ) = Et [f (t + dt , Xt+dt )] Et [df (t , Xt )] = 0⇒ 

Using Ito’s Lemma, 

Et [df (t , Xt )] = 
∂f (t , X )

+ µ(t , X ) 
∂f (t , X )

+ 
1 
σ(t , X )2 ∂

2f (t , X ) 
dt = 0 

∂t ∂X 2 ∂X 2 

Kolmogorov backward equation 

∂f (t , X )
+ µ(t , X ) 

∂f (t , X )
+ 

1 
σ(t , X )2 ∂

2f (t , X )
= 0,


∂t ∂X 2 ∂X 2


with boundary condition

f (T , X ) = g(X ) 
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Example: Square-Root Diffusion 

Consider a popular diffusion process used to model interest rates and 
stochastic volatility 

dXt = −κ(Xt − X ) dt + σ Xt dZt 

We want to compute the conditional moments of this process, to be used as 
a part of GMM estimation. 

Compute the second non-central moment 

f (t , X ) = E(XT 
2|Xt = X ) 

Using Kolmogorov backward equation, 

∂f (t , X )
− κ(X − X ) 

∂f (t , X )
+ 

1 
σ2X 

∂2f (t , X )
= 0,


∂t ∂X 2 ∂X 2


with boundary condition

f (T , X ) = X 2 
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Example: Square-Root Diffusion 

Look for the solution in the the form 

f (t , X ) = a0(t) + a1(t)X + 
a2(t) X 2 

2 

Substitute f (t , X ) into the PDE 

a0
�(t) + a1

�(t)X + 
a2
�(t) 

X 2 − κ(X − X )(a1(t) + a2(t)X ) + 
σ2 

Xa2(t) = 0
2 2 

Collect terms with different powers of X , zero, one and two, to get 

a0
�(t) + κXa1(t) = 0 

σ2 

a1
�(t) − κa1(t) + + κX a2(t) = 0

2 

a2
�(t) − 2κa2(t) = 0 

with initial conditions 

a0(T ) = a1(T ) = 0, a2(T ) = 2 
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Example: Square-Root Diffusion


We solve the system of equations starting from the third one and working up 
to the first: 

a0(t) = XA 
� 

1 
2 

e2κ(t−T ) − eκ(t−T ) + 
1 
2 

� 

� � 
a1(t) = A eκ(t−T ) − e2κ(t−T ) 

a2(t) = 2e2κ(t−T ) 

A = 
σ2 + 2κX 

κ 

Compare the exact expression above to an approximate expression, obtained 
by assuming that T − t = Δt is small. 
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Example: Square-Root Diffusion


Assume T − t = Δt is small. Using Taylor expansion,


a0(t) = o(Δt), a1(t) = AκΔt + o(Δt)


a2(t) = 2(1 − 2κΔt) + o(Δt)


Then � � 
Et (Xt

2 
+Δt |Xt = X ) ≈ X 2 + Δt (σ2 + 2κX )X − 2κX 2

Alternatively, 

Xt+Δt ≈ Xt − κ(Xt − X ) Δt + σ 
� 

Xt 

√
Δtεt , εt ∼ N(0, 1) 

Therefore 

Et (Xt
2 
+Δt |Xt = X ) ≈ X 2 + Δt σ2X − 2κX (X − X ) 
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Risk-Neutral Probability Measure


Under the risk-neutral probability measure Q, expected conditional asset 
returns must equal the risk-free rate. 

Alternatively, using the discounted cash flow formula, the price Pt of an asset 
with payoff HT at time T is given by � � �T � � 

Pt t exp − rs ds HT= EQ 

t 

where rs is the instantaneous risk-free interest rate at time s. 

The DCF formula under the risk-neutral probability can be used to compute 
asset prices by Monte Carlo simulation (e.g., using an Euler scheme to 
approximate the solutions of SDEs). 

Alternatively, one can derive a PDE characterizing asset prices using the 
connection between PDEs and SDEs. 
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Change of Measure


We often want to consider a probability measure Q different from P, but the 
one that agrees with P on which events have zero probability (equivalent to 
P) (e.g., Q could be a risk-neutral measure). 

Different probability measures assign different relative likelihoods to the 
trajectories of the Brownian motion. 

It is easy to express a new probability measure Q using its density 

dQ
ξT = 

dP T 

For any random variable XT , 

EQ 
0 [XT ] = EP 

0 [ξT XT ], EQ 
t [XT ] = EP ξT XT , ξt ≡ EP 

t [ξT ]t ξt 

Q is equivalent to P if ξT is positive (with probability one). 
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Change of Measure


If we consider a probability measure Q different from P, but the one that 
agrees with P on which events have zero probability, then the P-Brownian 
motion Zt 

P becomes an Ito process under Q: 

dZt 
P = dZt 

Q − ηt dt 

for some ηt . Zt 
Q is a Brownian motion under Q. 

When we change probability measures this way, only the drift of the Brownian 
motion changes, not the variance. 

Intuition: a probability measure assigns relative likelihood to different 
trajectories of the Brownian motion. Variance of the Ito process can be 
recovered from the shape of a single trajectory (quadratic variation), so it 
does not depend on the relative likelihood of the trajectories, hence, does not 
depend on the choice of the probability measure. 
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Risk-Neutral Probability Measure


Under the risk-neutral probability measure, expected conditional asset 
returns must equal the risk-free rate. 
Start with the stock price process under P: 

dSt = µtSt dt + σtSt dZt 
P 

Under the risk-neutral measure Q, 

dSt = rtSt dt + σtSt dZt 
Q


Thus, if dZt 
P = −ηt dt + dZt 

Q,


µt − σt ηt = rt


ηt is the price of risk. 
The risk-neutral measure Q is such that the process Zt 

Q defined by 

dZt 
Q = 

µt − rt dt + dZt 
P 

σt 

is a Brownian motion under Q. 
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Risk-Neutral Probability Measure


Under the risk-neutral probability measure, expected conditional asset 
returns must equal the risk-free rate. 

We conclude that for any asset (paying no dividends), the conditional risk 
premium is given by 

EP dSt 
− rt dt = EP dSt 

− EQ dSt 
t t tSt St St 

Thus, mathematically, the risk premium is the difference between expected 
returns under the P and Q probabilities. 
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Risk-Neutral Probability Measure 

If we want to connect Q to P explicitly, how can we compute the density, 
dQ/dP? 
In discrete time, the density was conditionally lognormal. 
The density ξT = (dQ/dP)T is given by � � t � t � 

ξt = exp − ηu dZu 
P − 

1 
η2 

u du , 0 � t � T
20 0 

The state-price density is given by �� t � 

πt = exp −ru du ξt 
0 

The reverse is true: if we define ξT as above, for any process ηt satisfying 
certain regularity conditions (e.g., ηt is bounded, or satisfies the Novikov’s 
condition as in Back 2005, Appendix B.1), then measure Q is equivalent to P 
and � t 

Zt 
Q = Zt 

P + ηu du 
0 

is a Brownian motion under Q. 
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Risk-Neutral Probability and Arbitrage


If there exists a risk-neutral probability measure, then the model is

arbitrage-free.


If there exists a unique risk-neutral probability measure in a model, then all 
options are redundant and can be replicated by trading in the underlying 
assets and the risk-free bond. 

A convenient way to build arbitrage-free models is to describe them directly 
under the risk-neutral probability. 

One does not need to describe the P measure explicitly to specify an

arbitrage-free model.


However, to estimate models using historical data, particularly, to estimate 
risk premia, one must specify the price of risk, i.e., the link between Q and P. 
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Black-Scholes Model


Assume that the stock pays no dividends and the stock price follows 

dSt 
= µ dt + σ dZt 

P 

St 

Assume that the interest rate is constant, r . 
Under the risk-neutral probability Q, the stock price process is 

dSt 
= r dt + σ dZt 

Q 

St


Terminal stock price ST is lognormally distributed:


ln ST = ln S0 + r − 
σ2 

T + σ
√

T εQ , εQ ∼ N(0, 1)
2 

Price of any European option with payoff H(ST ) can be computed as 

= EQ ePt t 
−r(T −t)H(ST ) 
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Term Structure of Interest Rates


Consider the Vasicek model of bond prices. 

A single-factor arbitrage-free model. 

To guarantee that the model is arbitrage-free, build it under the risk-neutral 
probability measure. 

Assume the short-term risk-free rate process under Q 

drt = −κ(rt − r) dt + σ dZt 
Q 

Price of a pure discount bond maturing at T is given by � � �T �� 

P(t , T ) = EQ 
t exp − rs ds 

t 

Characterize P(t , T ) as a solution of a PDE. 
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Term Structure of Interest Rates 

Look for P(t , T ) = f (t , rt ). 

Using Ito’s lemma, 

EQ 
t [df (t , rt )] = 

∂f (t , rt )
− κ(rt − r) 

∂f (t , rt )
+ 

1 
σ2 ∂

2f (t
2 

, rt ) dt 
∂t ∂rt 2 ∂rt 

Risk-neutral pricing requires that 

EQ 
t [df (t , rt )] = rt f (t , rt ) dt 

and therefore f (t , rt ) must satisfy the PDE 

∂f (t , r)
− κ(r − r) 

∂f (t , r)
+ 

1 
σ2 ∂

2f (t , r)
= rf (t , r)

∂t ∂r 2 ∂r2 

with the boundary condition 
f (T , r) = 1 
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Term Structure of Interest Rates


Look for the solution in the form


f (t , rt ) = exp (−a(T − t) − b(T − t)rt )


Derive a system of ODEs on a(t) and b(t) to find 

a(T − t) = r(T − t) − 
r 

1 − e−κ(T −t) − 
κ 

σ2 � 
2κ(T − t) − e−2κ(T −t) + 4e−κ(T −t) − 3 

� 

4κ3 

1 � 
−κ(T −t) 

� 
b(T − t) = 1 − e

κ 
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Term Structure of Interest Rates


Assume a constant price of risk η. What does this imply for the interest rate 
process under the physical measure P and for the bond risk premia? 

Use the relation 
dZt 

P = −η dt + dZt 
Q 

to derive 

drt = −κ(rt − r) dt + ση dt + σ dZt 
P = −κ rt − r + 

ση 
dt + σ dZt 

P 

κ 

Expected bond returns satisfy 

EP dP(t , T ) 
= (rt + σP

t η) dtt P(t , T ) 

where 

σP
t = 

1 ∂f (t , rt ) 
σ = −b(T − t)σ

f (t , rt ) ∂rt 

|b(T − t)σ| is the volatility of bond returns. 
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Equity Options with Stochastic Volatility 

Consider again the Heston’s model. Assume that under the risk-neutral 
probability Q, stock price is given by 

d ln St = (r − 
1 

vt ) dt + 
√

vtdZt 
Q,S 

2 
dvt = − κ(vt − v) dt + γρ

√
vtdZt 

Q,S + γ 
� 

1 − ρ2
√

vtdZt 
Q,v 

dZt 
Q,S dZt 

Q,v = 0 

Zt 
Q,v models volatility shocks uncorrelated with stock returns.


Constant interest rate r .


The price of a European option with a payoff H(ST ) can be computed as


Pt = EQ 
t [exp (−r(T − t)) H(ST )] 

We haven’t said anything about the physical process for stochastic volatility. 
In particular, how is volatility risk priced? 
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Equity Options with Stochastic Volatility 

In the Heston’s model, assume that the price of volatility risk is constant, ηv , 
and the price of stock price risk is constant, ηS . 
Then, under P, stock returns follow 

d ln St = r + ηS √vt − 
2
1 

vt dt + 
√

vtdZt 
P,S 

dvt = 
� 
−κ(vt − v) + γ

√
vt 

� 
ρηS + 

� 
1 − ρ2ηv 

�� 
dt+ 

γρ
√

vtdZt 
P,S + γ 

� 
1 − ρ2

√
vtdZt 

P,v 

dZt 
P,S dZt 

P,v = 0 

We have used 

dZt 
P,S = − ηS dt + dZt 

Q,S 

dZt 
P,v = − ηv dt + dZt 

Q,v 

Conditional expected excess stock return is 

EP 

� 
dSt 

− r dt 
� 

= EP 
� 
d ln St + 

vt dt − r dt 
� 
= 
� 
ηS √vt 

� 
dtt tSt 2 
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Equity Options with Stochastic Volatility


Our assumptions regarding the market prices of risk translate directly into 
implications for return predictability. 

For stock returns, our assumption of constant price of risk predicts a

nonlinear pattern in excess returns: expected excess stock returns

proportional to conditional volatility.


Suppose we construct a position in options with the exposure λt to stochastic 
volatility shocks and no exposure to the stock price: 

dWt = [...] dt + λt dZt 
P,v 

Then the conditional expected gain on such a position is 

(Wtr + λt η
v ) dt 
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Heston’s Model of Stochastic Volatility


Assume that under the risk-neutral probability Q, stock price is given by 

d ln St = (r − 
1 

vt ) dt + 
√

vtdZt 
Q,S 

2 
dvt = − κ(vt − v) dt + γρ

√
vtdZt 

Q,S + γ 
� 

1 − ρ2
√

vtdZt 
Q,v 

dZt 
Q,S dZt 

Q,v = 0 

Z Q,v models volatility shocks uncorrelated with stock returns. t 

Constant interest rate r .


The price of a European option with a payoff H(ST ) can be computed as


= EQ [exp (−r(T − t)) H(ST )] Pt t 

Assume that the price of volatility risk is constant, ηv , and the price of stock

price risk is constant, ηS .
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Variance Swap in Heston’s Model 

Consider a variance swap, paying �T 

(d ln Su)
2 − Kt 

2 

t 

at time T . What should be the strike price of the swap, Kt , to make sure that 
the market value of the swap at time t is zero? 
Using the result on quadratic variation, 

(d ln St )
2 = vt dt 

the strike price must be such that ���T �� 

e−r(T −t)EQ 
t vu du − Kt 

2 = 0 
t 

Need to compute ��T � 

K 2 = Et 
Q 
t 

t 
vu du 
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Variance Swap in Heston’s Model 

Since 

vu = vt −	
u 

κ(vs − v) ds + γρ 
u √

vs dZs 
Q,S + γ 

� 
1 − ρ2 

u √
vs dZs 

Q,v 

t t t 

we find that 

u u 

EQ 
t [vu ] = vt − EQ 

t κ(vs − v) ds = vt − κ(EQ 
t [vs] − v) ds 

t	 t 

Solving the above equation for EQ 
t [vu], we find


EQ 
t [vu ] = v + e−κ(u−t)(vt − v)


We obtain the strike price ��T � 
1 � � 

Kt 
2 = EQ 

t vu du = v(T − t) + (vt − v) 1 − e−κ(T −t) 

t κ 
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Expected Profit/Loss on a Variance Swap 

To compute expected profit/loss on a variance swap, we need to evaluate ��T � 

EP (d ln Su )
2 − K 2 

t t 
t 

Instantaneous expected gain on a long position in the swap is easy to 
compute in closed form. 
The market value of a swap starts at 0 at time t , and at s > t becomes � �� s �T �� 

Ps ≡ EQ e−r (T −s) vu du + vu du − K 2 
s t �� t s �s 

= e−r(T −s) vu du + Ks 
2 − Kt 

2 

t 

We conclude that the instantaneous gain on the long swap position at time s 
equals 

[...] ds + 
1 

e−r(T −s) 
� 

1 − e−κ(T −s) 
� 

dvs
κ 
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Expected Profit/Loss on a Variance Swap


We conclude that the instantaneous gain on the long swap position at time s 
equals 

[...] ds + 
1 

e−r(T −s) 
� 

1 − e−κ(T −s) 
� 

dvs
κ 

Given our assumed market prices of risk, ηS and ηv , the time-s expected 
instantaneous gain on the swap opened at time t is 

−r (T −s) −κ(T −s)Psr ds + γ
√

vs 
1 

e
� 

1 − e
�� 

ρηS + 
� 

1 − ρ2ηv 
� 

ds 
κ 
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Summary


Risk-neutral pricing is a convenient framework for developing arbitrage-free 
pricing models. 

Connection to classical results: risk-neutral expectation can be characterized 
by a PDE. 

Risk premium on an asset is the difference between expected return under P 
and under Q probability measures. 
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Readings


Back 2005, Sections 2.1-2.6, 2.8-2.9, 2.11, 13.2, 13.3, Appendix B.1. 

c� Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 74 / 74




MIT OpenCourseWare
http://ocw.mit.edu 

15.450 Analytics of Finance 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms . 

http://ocw.mit.edu
http://ocw.mit.edu



