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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Vector Notation 

Suppose θ is a vector. We always think of θ as a column: ⎞⎛ 
θ1 
. . ⎟⎠ , θ � = θ1 . . . θNθ = ⎜⎝ . 
θN 

Partial derivatives of a smooth scalar-valued function h(θ): ⎛ ⎞ 
∂h(θ) 
∂θ1 
. . . 

⎜⎜⎝ 
⎟⎟⎠∂h(θ) 

, 
∂h(θ) 
∂θ � ≡ ∂h(θ) ∂h(θ)= . . . 

∂θ1 ∂θN∂θ 
∂h(θ) 
∂θN 

If h(θ) is a vector of functions, (h1(θ), ..., hM (θ))
�, ⎡ ⎤ 

∂h1(θ) ∂h1(θ) 
∂θ1 ∂θN

· · · ⎢⎢⎣ 
⎥⎥⎦ 

∂h(θ) . . . . . .= .. .∂θ � 
∂hM (θ) ∂hM (θ) 
∂θ1 ∂θN

· · · 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Multi-Variate Normal Distribution


Linear combinations of normal random variables are normally distributed: 

x ∼ N(0, Ω) Ax ∼ N(0, AΩA �)⇒ 

The distribution of the sum of squares of n independent N(0, 1) variables is 
called χ2 with n degrees of freedom: 

ε ∼ N(0, I) ε �ε ∼ χ2(dim(ε))⇒ 

Distribution of a common quadratic function of a normal vector


x ∼ N(0, Ω) x �Ω−1x ∼ χ2(dim(x))
⇒ 

Density function of x ∼ N(µ, Ω): 

φ(x) = 
� 
(2π)N |Ω| 

�−1/2 
e− 12 (x−µ)� Ω−1(x−µ) 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

The Delta Method 

Given the estimator θ�, want to derive the asymptotic distribution of the vector 
of smooth functions h(θ�). 
Locally, a smooth function is approximately linear: 

(θ�− θ0) 
θ0 

h(θ�) ≈ h(θ0) + 
∂h(θ) 
∂θ � 

Let θ�− θ0 ∼ N(0, Ω), Ω = Var(θ�) is small (∝ 1/T ), then 

h(θ�) − h(θ0) ∼ N (0, AΩA�) 

∂h(θ)
A = 

∂θ � 
θ0 

In estimation, replace A and Ω with consistent estimates A� = ∂h(θ) and �Ω:
∂θ� 

θ 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Sharpe Ratio Distribution by Delta Method


Estimate mean and standard deviation of excess returns (µ�, σ�). 
Asymptotic variance-covariance matrix of parameter estimates θ� = (µ�, σ�) � is 
estimated to be Ω� . 

Sharpe ratio is estimated to be � = h(θ�) ≡ � σ.SR µ/�
Compute � � �


∂h(θ) � 1 µ�

A� = 

∂θ � 
�� 
θ� = 

σ� − 
σ�2 

Variance of the Sharpe ratio estimate is 

1� � � � ⎛ ⎞ 
σ�1 µ� �− Ω ⎝ ⎠ 

σ� σ�2 
− 

σ�µ�2 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

GMM Standard Errors 

Under mild regularity conditions, GMM estimates are consistent: 
asymptotically, as the sample size T approaches infinity, θ� θ0 (in→
probability). 

Define �

d� = 

∂E�(f (xt , θ)) ��� , S� = E�[f (xt , θ�)f (xt , θ�)�]

∂θ � � 

θ�
GMM estimates are asymptotically normal: 

√
T (θ�− θ0) ⇒ N 

� 

0, 
� 

d� �S�−1d��−1 
� 

Standard errors are based on the asymptotic var-cov matrix of the estimates, � �−1 
T Var[θ�] ≈ d� �S�−1d�

c� Leonid Kogan ( MIT, Sloan ) Confidence Intervals and Tests 15.450, Fall 2010 9 / 41 



� � 

The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Mean and Standard Deviation


Compute standard errors for estimates of mean and standard deviation 

f1(xt , θ) = xt − µ, f2(xt , θ) = (xt − µ)2 − σ2 

∂E�(f (xt , θ)) ��� � 
−1 0 

� � 
−1 0 

� 

d� = � = = 
∂θ� � −2(E�(xt ) − µ�) −2σ� 0 −2σ�

θ�
S� = E�[f (xt , θ�)f (xt , θ�)�] = E� f1

2 f1
f
f
2
2 

f1f2 2 

θ�− θ0 ∼ N(0, 
1 

V�), V� = 
� 

d� �S�−1d��−1 

T 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Mean and Standard Deviation, Gaussian Distribution


Recall that for Gaussian distribution, E[(x − µ0)
3] = 0, E[(x − µ0)

4] = 3σ4
0. 

Using LLN, 

plimT →∞ d� = d ≡ 
−1

0 −2σ
0
0 

σ2 0
plimT →∞ S� = S ≡ 0

0 
2σ0

4 

1 
θ�− θ0 ∼ N(0, V�)

T � �−1 σ2 0
plimT →∞ V� = d �S−1d = 

0
0 

1
2 σ0

2 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Mean and Standard Deviation, Gaussian 
Distribution 

MATLAB Code 
� � ���� �� � ���� ����� � ���� 
� � �� � ����������������� � ��������� ������ 

������ � ����� � ������� � ��� ��������� ��������� 
��������� � ���������� � ������ � ������������� 

� � �� � ������� �� � ���������� � ������������� 
� � ��� �� � �������������� 
� � ����� � �� � ���� 
� � ������ � ������ � ��� 

����� � �������� � �������� � ������� �������� ������ 
�������� � �������� � �������� 

® 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Mean and Standard Deviation, Gaussian 
Distribution 

MATLAB Output 
�� � ������ ����� � ������ 
������ � ������ ��������� � ������ 
����� � ������ �������� � ������ 

® 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Mean and Standard Deviation, Gaussian 
Distribution 

95% Confidence intervals for parameter estimates can be constructed as 

� θi ), �CI(θi ) = [θ�i − 1.96 × SE(� θi + 1.96 × SE(θ�i )], i = 1, 2 

Asymptotically, these should contain the true values with 95% probability. 

How good are the CI’s in a finite sample? 

Perform a Monte Carlo experiment: simulate N independent artificial samples 
and compute the coverage frequency. 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Mean and Standard Deviation, Gaussian 
Distribution 

MATLAB Code 
�������� � ����������� 
��� ����� 

� � �� � ����������������� � ��������� ������ 

�������� ���������� ������ ��������� � ��������������� 

������������� � ����������� � ��� � ������������ 
������������� � �������������� � ������ � ��������������� 

��� 
� � ���������������� 

® 

100,000 simulations: coverage frequencies are (0.945, 0.929). 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Sharpe Ratio Distribution by Delta Method 
Gaussian distribution 

Asymptotic variance-covariance matrix of the parameter estimates 
θ� = (µ�, σ�) � is � �


1 σ�2 0

Ω� = 

T 0 1
2 σ�2 

Asymptotic variance of the Sharpe ratio is 

� � � ⎛ 1 ⎞ 
1 µ� � ⎝ 

σ� 1 1 � 2 
− Ω ⎠ = 1 + SR 

σ� σ�2 
− 

σ�µ�2 
T 2 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Ordinary Least Squares (OLS) and GMM


Consider a linear model 
yt = xt

�β + ut 

OLS is based on the assumption that the residuals have zero mean 
conditionally on the explanatory variables and each other: 

E[ut |xt , xt−1, ..., ut−1, ut−2, ...] = 0 

If we define 
f (xt , yt , β) = xt (yt − xt

�β)


then β can be estimated using GMM:


Iterated Expectations 
E[xt (yt − xt

�β)] = E[xtut ] = E[xt E[ut |xt ]] = 0 

c� Leonid Kogan ( MIT, Sloan ) Confidence Intervals and Tests 15.450, Fall 2010 18 / 41 



The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Ordinary Least Squares (OLS) and GMM 

GMM estimate is based on


E�[xt (yt − xt
�β)] = 0 = β� = E�(xtxt

�)−1E�(xtyt )
⇒ 

which is the standard OLS estimate. 

To find standard errors, compute 

S� = E�(ft ft�) = E�(u�t 
2xt xt

�), u�t ≡ yt − xt
�β�

d� = 
∂E�[f ] 

= −E�(xtxt
�)

∂β � 

Then


1 � �−1 1

Var[θ�] = d� �S�−1d� = E�(xt xt

�)−1E�(u�t 
2xtxt

�)E�(xtxt
�)−1 

T T 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Standard Errors: Correlated Observations


When f (xt , θ) are correlated over time, formulas for standard errors must be

adjusted to account for autocorrelation.


Correlated observations affect the effective sample size.


The relation 

Var[�θ] = 
1 
T 

� �d−1 �S 
� �d � 

�−1 
� 

= 
1 
T 

� �d �S−1 �d � 
�−1 

is still valid. But need to modify the estimate S�. 

In an infinite sample, 

∞
S = E [f (xt , θ0)f (xt−j , θ0)

�] 
j=−∞ 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Estimating S: Newey-West


Newey-West procedure for computing standard errors prescribes 

k T

S� = 
� k − |j | 1 � 

f (xt , θ�)f (xt−j , θ�) � (Drop out-of-range terms) 
k T 

j=−k t=1 

k is the band width parameter. The larger the sample size, the larger the k 
one should use. Suggested growth rate is k ∝ T 1/3. 

In a finite sample, need k to be small compared to T , but large enough to 
cover the intertemporal dependence range. 

Consider several values of k and compare the results. 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

OLS Standard Errors With Correlated Residuals 

Linear model 
yt = xt

�β + ut 

Assume that 
E[ut |xt , xt−1, ...] = 0


but allow ut to be autocorrelated.


Since f (xt , θ) = xtut , Newey-West estimate of S� is 

k T� k − |j | 1 � � � 
S� = utxtxt

�
−j ut−j (Drop out-of-range terms) 

k T 
j=−k t=1 

Asymptotic var-cov matrix of the regression coefficients: 

Var[θ�] = 
1

E�(xtxt
�)−1 S� E�(xtxt

�)−1 

T 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Estimating Average Interest Rate 

We want to estimate the average 3-months TBill rate using historical data. 

3-Month Treasury Bill secondary market rate, monthly observations. 
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Source: Federal Reserve Bank of St. Louis. 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Long-Horizon Return Predictability


Predict S&P 500 returns using the log of the dividend-price ratio (1934/01 – 
2008/12) � � 

D 
rt t+h = α + β ln + ut+h→ P t−1 

Returns are cumulative over 6 or 12 months. Sum of monthly returns. 

h β Standard Error 
k = 0 k = 5 k = 12 k = 24 k = 36 

6 0.0530 0.0089 0.0185 0.0215 0.0233 0.0232 
12 0.1067 0.0129 0.0297 0.0378 0.0428 0.0431 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Discussion


Classical OLS is based on very restrictive assumptions. 

In practice, the RHS variables are stochastic, and not uncorrelated with 
lagged residuals. 

GMM provides a powerful framework for dealing with regressions: OLS is 
valid as long as the moment conditions are valid. 

Important to treat standard errors correctly. GMM offers a general recipe. 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

MLE and GMM 

MLE or QMLE can be related to GMM. �TOptimality conditions for maximizing L(θ) = t=1 ln p(xt |past x ; θ) are 

T� ∂ ln p(xt |past x ; θ) 
= 0 

∂θ 
t=1 

If we set f (xt , θ) = ∂ ln p(xt |past x ; θ)/∂θ (the score vector), then MLE is 
“GMM” with the moment vector f . 

Scores are uncorrelated over time because Et [f (xt+1, θ0)] = 0 (Campbell, Lo, 
MacKinlay, 1997, Appendix A.4). Standard errors using GMM formulas: 

d� = E� ∂2 ln p(xt |past x ; θ) 
, S� = E� ∂ ln p(xt |past x ; θ) ∂ ln p(xt |past x ; θ) 

∂� θ � ∂� ∂θ��θ∂� θ � �−1 
T Var[θ�] = d� �S�−1d�
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Nonlinear Least Squares (NLS) 

Consider a nonlinear model


yt = h(xt , β) + ut , E[ut |xt ] = 0


We use QMLE to estimate this model. Pretend that errors ut are IID N(0, σ2). 
Minimize log-likelihood 

L(β) = 
T

− ln 
√

2πσ2 −
(yt − h(xt , β))2 

2σ2 
t=1 

First-order conditions can be viewed as moment conditions in GMM: 

β� = arg min E 
� 
(yt − h(xt , β))

2� E 
∂h(xt , β)

(yt − h(xt , β)) = 0 
β 

⇒ 
∂β 

Nonlinear Least Squares. Can use GMM formulas for standard errors. 
Why not choose other moments, e.g., f = g(xt )(yt − h(xt , β)) with pretty

much arbitrary g(xt ), e.g., g(xt ) = xt ?

We could. But this may result in less precise estimates of β� or invalid

moment conditions. In fact, if ut are Gaussian, NLS is optimal (see MLE).
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Hypothesis Tests


Sample of independent observations x1, ..., xT with distribution p(x , θ0). 

Want to test the null hypothesis H0, which is a set of restrictions on the

parameter vector θ0, e.g., b �θ0 = 0.


Statistical test is a decision rule, rejecting the null if some conditions are

satisfied by the sample, i.e.,


Reject if (x1, ..., xT ) ∈ A 

Test size is the upper bound on the probability of rejecting the null hypothesis 
over all cases in which the null hypothesis is correct. 

Type I error is false rejection of the null H0. Test size is the maximum

probability of false rejection.
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

χ2 Test 

Want to test the Null Hypothesis regarding model parameters:


h(θ) = 0


Construct a χ2 test: 
Estimate the var-cov of h(θ�), V� . 
Construct the test statistic


ξ = h(θ�) �V�−1h(θ�) ∼ χ2(dim h(θ�))

Reject the Null if the test statistic ξ is sufficiently large. Rejection threshold is 
determined by the desired test size and the distribution of ξ under the Null. 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: OLS


Suppose we run a predictive regression of yt on a vector of predictors xt : 

yt = β0 + xt
�β + ut 

Compute parameter estimates β� by OLS. Use Newey-West to obtain var-cov 
matrix for β�, Var(β�). 
Test the Null of no predictability: β = 0. 

Test statistic is

ξ = β� � � Var(β�) �−1 

β� ∼ χ2(dim(β))


Test of size α: reject the Null if ξ � ξ, where 

CDFχ2(dim(β))(ξ) = 1 − α 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Testing the Sharpe Ratio


Suppose we are given a time series of excess returns. 

We want to test whether the Sharpe ratio of returns is equal to SR0. 
Two steps:


Using the delta method, derive the asymptotic variance of the Sharpe ratio

estimate, � = � σ.
SR µ/�
Test statistic 

SR − SR0)
2 

∼ χ2(1)
Var( �SR) 

c� Leonid Kogan ( MIT, Sloan ) Confidence Intervals and Tests 15.450, Fall 2010 34 / 41 



The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Sharpe Ratio Comparison


Suppose we observe two series of excess returns, generated over the same 
period of time by two trading strategies: 

(x1
1 , x2

1 , ..., xT 
1 ) and (x1

2 , x2
2 , ..., xT 

2 ) 

We do not know the exact distribution behind each strategy, but we do know 
that these returns are IID over time. 

Contemporaneously, xt 
1 and xt 

2 may be correlated. 

We want to test the null hypothesis that these two strategies have the same 
Sharpe ratio. 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Sharpe Ratio Comparison


Stack together the two return series to create a new observation vector 

xt = (xt 
1 , xt 

2) � 

The parameter vector is 
θ0 = (µ1

0 , σ0
1, µ2

0 , σ0
2) 

The null hypothesis is � �0 0 

H0 : 
µ

σ0
1 − 

µ

σ0
2 = 0 

1 2 

To construct the rejection region for H0, estimate the asymptotic distribution 
µ1 µ2of � − � .
σ�1 σ�2 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Sharpe Ratio Comparison 

Using standard GMM formulas, estimate the asymptotic variance-covariance �Ω.matrix of the parameter estimates θ�,

Define 
h(θ) = 

µ1 
− 

µ2 

σ1 σ2 

Compute 
µ2− 1 

σ2 

∂h(θ) 1 �σ1 

µ1 
(σ�1 )2A = 

Asymptotically, variance of h(θ�) is 

�θ 

−= (σ�2)2 
∂θ � 

⎛ ⎞1 ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
h(θ�) = 1 − (σ�1)2 (σ�2 )2 

− (σ�1 )2 

− 1 
σ2 

σ1 
µ1 

Var µ1 − 1 µ2 Ωσ1 σ2 

µ2 
(σ�2 )2 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Example: Sharpe Ratio Comparison 

Under the null hypothesis, h(θ0) = 0, and therefore 

h(θ�) h(θ�) − h(θ0� 
) 
∼ N(0, 1) �Var�Var 

= 

h(θ�) h(θ�) 
Define the rejection region for the test of the null h(θ0) = 0 as 

A = 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

h(θ�) 
Var h(θ�) � z 

⎫ ⎪⎪⎬ ⎪⎪⎭ 

A 5% test is obtained by setting z = 1.96 = Φ−1(0.975), where Φ is the

Standard Normal CDF.
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Key Points


Delta method. 

GMM standard errors, MLE and QMLE standard errors. 

OLS standard errors with correlated observations. 

χ2 test. 

Testing restrictions on OLS coefficients, nonlinear restrictions. 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Readings


Cochrane, 2005, Sections 11.1, 11.3-4, 11.7, 20.1. 

Campbell, Lo, MacKinlay, 1997, Sections A.2-4. 

Cochrane, “New facts in finance.”: 

���������������������������������������������� 
���������������������������� 
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The Delta Method GMM Standard Errors Regression as GMM Correlated Observations MLE and QMLE Hypothesis Testing 

Appendix: Intuition for GMM Standard Errors 

Consider IID observations x1, ..., xT . 
Delta method computes the var-cov of E�[f (xt , θ�)], given the variance of θ�. By 
going in reverse direction, we compute the var-cov of θ� starting from the 
var-cov of E�[f (xt , θ�)]. 
The latter is estimated as 

� � � � � � � �Var[E�(f (xt , θ))] 
(
= 
1) 1 

Var[f (xt , θ)] 
(
= 
2) 1

E[f (xt , θ) f (xt , θ)
�] ≡ 

1 
S

T T T 

(1) IID observations, so Var( ) = Var( ); (2) Use E�[f (xt , θ�)] = 0· ·

Using the delta method on the LHS, with A� = d� = ∂E�[f (xt , θ�)]/∂θ��, 

1 
T 
�S ≈ �d Var[�θ] �d � 

and therefore 

Var[�θ] ≈ 
1 
T 

� �d−1 �S 
� �d � 

�−1 
� 

= 
1 
T 

� �d �S−1 �d � 
�−1 
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