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Example: S&P GSCI Index


Model daily changes in S&P GSCI index. 

The S&P GSCI index is a composite commodity index, maintained by S&P. 
“The S&P GSCI R� provides investors with a reliable and publicly 
available benchmark for investment performance in the commodity 
markets. The index is designed to be tradable, readily accessible to 
market participants, and cost efficient to implement. The S&P GSCI 
is widely recognized as the leading measure of general commodity 
price movements and inflation in the world economy.” 

Source:Standard & Poor’s. 

Changes in daily spot index levels: 

Pt zt = ln 
Pt−1 
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Example: S&P GSCI Index
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Example: S&P GSCI Index


Daily changes from 02-Jan-2004 to 23-Sep-2009. 

First, fit an AR(p) model to the series zt to extract shocks. 

De-mean the series: xt = zt − E�[zt ]. Set p = 13. 

BIC criterion shows that zt has no AR structure. AIC criterion is virtually flat. 

AR coefficients are very small. 

Treat xt as a serially uncorrelated shock series. 
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Example: S&P GSCI Index


While xt ’s may be uncorrelated, they may not be IID. 

Look for evidence of heteroscedasticity: time-varying conditional variance. 

Perform the Engle test, e.g., Tsay, 2005 (Section 3.3.1). 
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Engle Test for Conditional Heteroscedasticity


The idea of the test is simple: fit the AR(p) model to squared shocks and test 
the hypothesis that all coefficients are jointly zero. 

2 2 2xt = a0 + a1xt−1 + ... + apxt−p + ut 

One way to derive the test statistic:

Estimate the coefficients of the AR(p) model, θ� = (�a0, �a1, ..., �ap).

Estimate the var-cov matrix of the coefficients �
Ω. Don’t worry about 
autocorrelation, since under the null it is not there. 
Form the test statistic ⎛ ⎞ � �−1 

a�1 � ⎜ . ⎟F = (�a1, ..., �ap) Ω �a1,...,�ap ;�a1,...,�ap ⎝	 .. ⎠ 

ap 

Rejection region: F � F . Size of the test based on the asymptotic distribution: 
F ∼ χ2(p). 
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Engle Test


MATLAB code 
���� � �������� 
��� ������� ��������� �������������� � ����������� ����� ���� 

MATLAB output 
������ � 

�������� � 

������ ������ � � � 

® 

® 

c� Leonid Kogan ( MIT, Sloan ) Volatility Models 15.450, Fall 2010 9 / 45




Heteroscedasticity GARCH GARCH Estimation: MLE GARCH: QMLE Alternative Models Multivariate Models 

Outline 

1 Heteroscedasticity 

2 GARCH 

3 GARCH Estimation: MLE 

4 GARCH: QMLE 

5 Alternative Models 

6 Multivariate Models 

c� Leonid Kogan ( MIT, Sloan ) Volatility Models 15.450, Fall 2010 10 / 45 



Heteroscedasticity GARCH GARCH Estimation: MLE GARCH: QMLE Alternative Models Multivariate Models 

GARCH(p,q)


Consider a widely used model of time-varying variance: GARCH(p,q)

(generalized autoregressive conditional heteroskedasticity).


Consider a series of observations 

xt = σt εt , εt ∼ N(0, 1), IID 

Assume that the series of conditional variances σ2 
t follows 

p q� � 
σ2 

t = a0 + aixt
2 
−i + bj σt

2 
−j , ai , bj � 0 (GARCH(p,q)) 

i=1 j=1 

Focus on a popular special case GARCH(1,1). 
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GARCH(1,1) Dynamics


Let Et ( ) denote the conditional expectation given time-t information. ·

Et σt
2 
+1 = Et a0 + a1xt 

2 + b1σt 
2 = a0 + (a1 + b1)σt 

2


Et σt
2 
+2 = Et a0 + (a1 + b1)σt

2 
+1 

= a0[1 + (a1 + b1)] + (a1 + b1)
2σt 

2


Et σt
2 
+3 = Et a0 + (a1 + b1)σt

2 
+2 

= a0[1 + (a1 + b1) + (a1 + b1)
2] + (a1 + b1)

3σt 
2


. . . 

Et 
� 
σt

2 
+n 

� 
= a0

1 − (a1 + b1)
n 

+ (a1 + b1)
nσt 

2


1 − a1 − b1
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GARCH(1,1) Dynamics


Stable dynamics requires

a1 + b1 < 1


Convergence of forecasts: � � a0lim Et σt
2 
+n = 

n ∞ 1 − a1 − b1→

Average conditional variance:


E 
� 
xt

2 
+1 

� 
= a0 + a1E 

� 
xt 

2� + b1E 
� 
σ2 

t 

� 
⇒ E 

� 
xt 

2� = 
1 − a

a

1

0 

− b1
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GARCH(1,1) Monte Carlo


Unconditional distribution of xt has heavier tails than the conditional

(Gaussian) distribution.


Monte Carlo experiment: simulate GARCH (1,1) process with parameters 

a0 = 1, a1 = 0.1, b1 = 0.8 

Initiate σ1 = 1−a
a
1

0 
−b1

. 

Generate a sample of 100,000 observations using dynamics 

σ2 = a0 + a1xt
2 
−1 + b1σ

2 
t t−1 

xt = σt εt , εt ∼ N(0, 1), IID 

Drop the first 10% of the simulated sample (burn-in) and analyze the distribution 
of the remaining sample. 
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GARCH(1,1) Monte Carlo


MATLAB Code 
�������� � ���������� � ���������� 
��� � � ����� 

���� � �������������������� 
���������� � ������� � ������������� � ����������� 

��� 

���������������� � ��� � ���� ������� ������ 
� � ���������� � ��������� � 
��� ������� 

������ � ���������� � �������� ����� �� � 
������ � ������������� � ������� �� �������� ������������ 

��� 

® 
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GARCH(1,1) Monte Carlo


Compare the tails of the simulated sample to the Gaussian distribution: 

k 

Prob 

⎡ ⎣ � 

1 

xt 

E 
� 
x2 

t 

� > 

2 

k 

⎤ ⎦ 

3 4 
GARCH(1,1) 0.1540 0.0239 0.0025 0.0002 
Gaussian 0.1587 0.0228 0.0013 0.0000 
S&P GSCI 0.1351 0.0188 0.0077 0 
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MLE for GARCH(1,1)


Focus on GARCH(1,1) as a representative example. 

Estimate parameters by maximizing conditional log-likelihood). 

Form the log-likelihood function: 

T

L(θ) = ln p(xt |σt ; θ) 
t=1 

p(xt |σt ; θ) is the normal density 

2 
t 

tp(xt |σt ; θ) = � 
1 

e 
− 

2

x

σ2 

2πσ2 
t 
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MLE for GARCH(1,1)


Likelihood function for GARCH(1,1) 

L(θ) = 
T� 

t=1 

− ln 
√

2π − 
x2 

t 

2σ2 
t 
− 

1 
2 

ln 
� 
σ2 

t 

� 
σ2 

t = a0 + a1x2 
t−1 + b1σ

2 
t−1 

Need σ2
1 to complete the definition of L(θ). 

The exact value of σ2
1 does not matter in large samples, since σ2 

t converges to its 
stationary distribution for large t . 
A reasonable guess for σ2

1 improves accuracy in finite samples. 
Use unconditional sample variance: σ2

1 = E�[xt 
2]. 

Impose constraints on the parameters to guarantee stationarity. 
MLE-based estimates: 

θ� = arg max L(θ) 
(a0,a1,b1) 

subject to a1 � 0, b1 � 0, a1 + b1 < 1 

c� Leonid Kogan ( MIT, Sloan ) Volatility Models 15.450, Fall 2010 19 / 45 



Heteroscedasticity GARCH GARCH Estimation: MLE GARCH: QMLE Alternative Models Multivariate Models 

Example: S&P GSCI


Fit the GARCH(1,1) model to the series of S&P GSCI spot price changes. 

Use MATLAB ® function garchfit. garchfit constructs the likelihood function 
and optimizes it numerically. 

Parameter estimates: 

a1 = 0.0453, b1 = 0.9457 

Shocks to conditional variance are persistent, giving rise to volatility

clustering.
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Example: S&P GSCI 

Fitted time series of conditional volatility σ�t computed using 

σ2 2 σ2�t = a0 + a1xt−1 + b1�t−1 

2004 2005 2006 2007 2008 2009
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Date

σ t
Conditional Volatility of S&P GSCI Spot Price Changes
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Example: S&P GSCI


Extract a series of fitted errors xt�εt = 
σ�t 

Tail Probabilities (Prob[�εt > k ]) 

k 1 2 3 4 
Gaussian 0.1587 0.0228 0.0013 0.0000 �εt 0.1595 0.0209 0.0014 0 

Fitted errors conform much better to the Gaussian distribution than the 
unconditional distribution of xt does. 

In case of S&P GSCI spot price series, can attribute heavy tails in 
unconditional distribution of daily changes to conditional heteroscedasticity. 
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Standard Errors


We treat MLE as a special case of GMM with moment conditions 

∂ ln p(xt |σt ; θ)E� = 0 
∂θ 

Use general formulas for standard errors: 

∂2 ln p(x , θ�) ∂ ln p(x , θ�) ∂ ln p(x , θ�)
d� = E� , S� = E�

∂θ∂θ � ∂θ ∂θ � 

� �−1 
T Var[θ�] = d� �S�−1d�

How to compute derivatives, e.g., ∂ ln p(x ,θ�) ?
∂θ 

Use finite-difference approximations (garchfit). 
Compute derivatives analytically, recursively (discussed in recitations). 
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GARCH: Non-Gaussian Errors


Standard GARCH formulation assumes that errors εt are Gaussian. 

Assume that xt follow a different distribution, but still 

xt = σt εt , Et [εt ] = 0, Et [ε
2 
t ] = 1 

Two approaches: 
QMLE estimation, treating errors as Gaussian. 
MLE with an alternative distribution for εt , e.g. Student’s t . 
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GARCH: QMLE


Keep using the objective function 

T 2 

L(θ) = 
� 

− ln 
√

2π − 
2
x
σ
t 

2 − 
2
1 

ln 
� 
σt 

2� 
t=1 t 

Because the function x �−→ − ln x − a/x is maximized at x = a, conditional 
expectation � � 

x2 1 � � 
Et − 

2σ2 
t

t 

(θ)
− 

2 
ln σt 

2(θ) 

is maximized at the true value of θ. This means that θ0 maximizes the

unconditional expectation as well, and hence we can estimate it by

maximizing L(θ).
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GARCH: MLE with Student’s t Shocks


One prominent example of GARCH with non-Gaussian errors is the GARCH 
model with Student’s t error distribution. 

Assume that 

Γ [(ν + 1)/2] 
� 

ε2 �−(ν+1)/2 

p(εt ; ν) = � 1 + t , ν > 2 
Γ(ν/2) π(ν − 2) ν − 2 

ν/(ν − 2)εt have the Student’s t distribution with ν degrees of freedom. Γ 
is the Gamma function, Γ(x) = 

�
0 
∞ zx−1e−z dz. 

Likelihood function for GARCH(1,1): 

L(θ) = 
�T 

ln 
Γ [(ν � 

+ 1)/2]
− 

ν + 1
ln 1 + 

xt 
2 

t=1 Γ(ν/2) π(ν − 2) 2 (ν − 2)σ2 
t 

− ln(σ2 
t )/2 
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GARCH: Non-Gaussian Errors


Student’s t distribution has heavier tails than the Gaussian distribution. 

The number of degrees of freedom can be estimated together with other 
parameters, or it can be fixed. 

GARCH models generate heavy tails in the unconditional distribution, 
Student’s t adds heavy tails to the conditional distribution. 

Daily S&P 500 returns: capture unconditional distribution of shocks as 
Student’s t with ν ≈ 3; GARCH(1,1) captures conditional distribution of 
shocks as Student’s t with ν ≈ 6. 
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QMLE vs. MLE: Monte Carlo Experiments


How effective is the QMLE approach when dealing with non-normal shocks? 

We can gain intuition using Monte Carlo experiments. 

Beyond this particular context, our Monte Carlo design illustrates a typical 
simulation experiment. 
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Monte Carlo Design


Data Generating Process: 

σ2 = a0 + a1xt
2 
−1 + b1σ

2 
t t−1 

a1 = 0.05, b1 = 0.9 

εt are IID, Student’s t distribution with ν = 6. 

Simulate N = 1, 000 samples of length T = 1, 000 or 3, 000. 

In each case, start with σ1 = 1−a
a
1

0 
−b1 

and use a burn-in sample of 500 
periods. 

Perform MLE and QMLE estimations for each simulated sample and save 
point estimates �a1, b�1, and their standard errors. 
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Summary Statistics 

Compute the following statistics: 

Root-mean-squared-error (RMSE) of each parameter estimate 

RMSE(θ�) = 
N1 � 

N 
n=1 

(θ�n − θ0)2 

Average value of each parameter estimate 

N�1 �θnN 
n=1 

Estimated coverage probability of the confidence interval for each parameter 
estimate 

N1 � 

N 
1[|θ�n −θ0|�1.96 s.e.(θ�)] 

n=1 
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Monte Carlo Results


T Method 

1,000 
1,000 

QMLE 
MLE 

3,000 
3,000 

QMLE 
MLE 

RMSE(θ�) 
�a1 b�1 

0.0286 0.1951 
0.0228 0.1396 

0.0149 0.0356 
0.0115 0.0289 

Mean(θ�) 
�a1 b�1 

0.0551 0.8335 
0.0538 0.8613 

0.0513 0.8920 
0.0503 0.8940 

C.I.(θ�) Coverage 

�a1 b�1 

0.9240 0.8930 
0.9170 0.8920 

0.9380 0.9200 
0.9370 0.9390 

Both QMLE and MLE produce consistent parameter estimates. 

At T = 1, 000 there is a bias, which disappears at T = 3, 000. 

MLE estimates are more efficient: smaller RMSE. 

QMLE estimates do not rely on the exact distribution, more robust. 

QMLE confidence intervals are reliable, GMM formulas work. 
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Other GARCH-Type Models: EGARCH


Empirically, conditional volatility of asset returns often reacts asymmetrically 
to the past realized return shocks. 

Leverage effect: conditional stock market volatility increases following a stock 
market decline. 

EGARCH(p,q) model captures the asymmetric volatility response: 

p � � q� xt−i 
� 

ln σt =a0 + aig + bj ln σt−j (EGARCH(p,q))
σt−ii=1 j=1 

g(z) =|z | − c z 
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Mixed Data Sampling (MIDAS) 
Motivation 

Suppose we want to predict realized variance over a single holding period of 
the portfolio, which is a month. 
GARCH approach: 

Use monthly historical data, ignore the available higher-frequency (daily) data; or 
Model daily volatility and extend the forecast to a one-month period. Sensitive to 
specification errors. 

Mixed Data Sampling approach forecasts monthly variance directly using 
daily data. 
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Mixed Data Sampling 
Formulation 

We are interested in forecasting an H-period volatility measure, Vt
H 
+H,t e.g., 

sum of squared daily returns over a month (H = 22). 

Model expected monthly volatility measure as a weighted average of lagged 
daily observations (e.g., use squared daily returns) 

K

Vt
H 
+H,t = aH + φH bH (k , θ)Xt−k ,t−k−1 + εHt 

k=0 

Significant flexibility: 
X can contain squared return, absolute value of returns, intra-day high-low 
range, etc. 
Weights bH (k , θ) can be flexibly specified. 
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Mixed Data Sampling 
Estimation 

The model 
K

Vt
H 
+H,t = aH + φH bH (k , θ)Xt−k ,t−k−1 + εHt 

k=0 

Estimate using nonlinear least squares (NLS). 

Alternative specification: 

K

rt+H,t ∼ N µ, aH + φH bH (k , θ)Xt−k ,t−k−1 

k=0 

Estimate the parameters using QMLE. 
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Mixed Data Sampling 
Example 

Beta-function specification of the weights bH (k , θ): 

bH (k , θ) = �K

f K
k �, α, β � , f (x , α, β) = xα(1 − x)β 

j=0 f K
j , α, β 

Weights bH (k , θ) have 
flexible shape. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

x

f(
x)
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Multivariate Volatility Models 
Overview 

Model the dynamics of conditional variance-covariance matrix of the time 
series 

1/2 IID 
xt = Ωt εt , εt ∼ N(0, I) 

Many multivariate generalizations of GARCH framework. Main challenge is 
parameter proliferation. 

Use factor structures to treat high-dimensional cases. 

Averaging of realized covariances (exponentially weighted moving average, 
MIDAS framework). 
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MGARCH 
Example 

Multivariate GARCH analog 

Ωt = C + a(xt−1xt
�
−1) + bΩt−1 

Estimate using QMLE, analogous to GARCH(1,1). 

Limitation: all covariances have the same persistence. 
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Constant Conditional Correlations (CCC)


Model 
Ωt = Dt ΓDt 

Γ is the constant matrix of conditional correlations;

Dt is the diagonal matrix of conditional standard deviations.

Two-step estimation method:


Fit a scalar GARCH(1,1) to each component of x to estimate Dt ;


Estimate the unconditional correlation matrix of u�t , �ut = D�t 
−1xt 

T1 � �Γ = u�t u�t
�

T 
t=1 
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Dynamic Conditional Correlations (DCC)


Model 
Ωt = Dt ΓtDt 

Γt is the time-varying conditional correlation matrix; 
Dt is the diagonal matrix of conditional standard deviations. 
Two-step estimation method: 

Fit a scalar GARCH(1,1) to each component of x to estimate Dt ; 

Model Γt as 

(�Γt )ij = � 
(Qt )ij 

, Qt = (1 − a − b)Γ + a(�ut−1u�t
�
−1) + bQt−1 

(Qt )ii (Qt )jj 

Estimate the parameters Γ , a, b by QMLE on the �ut series. As before, 
u�t = D�t 

−1xt . 
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Summary


Volatility models are important for risk management, asset allocation,

derivative pricing.


GARCH models are convenient for extracting time-varying volatility and for 
frecasting. 

GARCH models can be estimated using QMLE or MLE. 

Mixed-frequency data can be used in forecasting. MIDAS. Straightforward 
using NLS or QMLE. 

Multiple extensions of GARCH, multivariate models. 
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Readings


Campbell, Lo, MacKinlay, 1997, Sections 12.2 (Introduction), 12.2.1. 
Note: there are typos in eq. (12.2.19). 

Tsay, 2005, Sections 3.3-3.5, 3.8. 

T. Andersen, T. Bollerslev, P. Christoffersen, F. Diebold, 2006, “Volatility and 
Correlation Forecasting,” in G. Elliott, C. Granger, and A. Timmermann (eds.), 
Handbook of Economic Forecasting. Amsterdam: North-Holland, 778-878. 

E. Ghysels, P. Santa-Clara, R. Valkanov, 2006, “Predicting volatility: getting 
the most out of return data sampled at different frequencies,” Journal of 
Econometrics 131, 59-95. 

c� Leonid Kogan ( MIT, Sloan ) Volatility Models 15.450, Fall 2010 45 / 45 



MIT OpenCourseWare
http://ocw.mit.edu 

15.450 Analytics of Finance 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms . 

http://ocw.mit.edu
http://ocw.mit.edu



