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Dynamic Portfolio Choice Financial Econometrics 

Portfolio Choice: Static Approach


In models in which all options are redundant (e.g., Black-Scholes), dynamic 
portfolio choice is relatively easy. 
Solve a static problem: 

Find the best state contingent payoff (under given utility) which is 
budget-feasible. 
Replicate the chosen payoff using dynamic trading in available assets. 

Merton’s solution: CRRA utility with risk aversion γ, Black-Scholes model: 

φ� µ − r 
= t γσ2 

Myopic portfolio is optimal. 
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Dynamic Portfolio Choice Financial Econometrics

Problem

Consider the Black-Scholes framework with parameters r , µ, and σ. Your
bjective is to find an optimal investment strategy maximizing the expected
tility of terminal portfolio value

E0

[
1 1(W

1 T )
−γ

− γ

]
ubject to a lower bound on terminal wealth:

WT > W

o
u

s

1 Using the static approach, express the optimal terminal wealth as a function of
the SPD.
Show that one can implement the optimal strategy using European options on
the stock.
(*) Implement the optimal strategy using dynamic trading.

2

3
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Dynamic Portfolio Choice Financial Econometrics 

DP


Dynamic programming principle. 

Bellman equation. 

Controlled Markov processes. Problem formulation. 

Key examples: portfolio choice with time-varying moments of returns; 
American option pricing. 
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Dynamic Portfolio Choice Financial Econometrics 

Parameter Estimation 
GMM 

Estimate parameters using moment restrictions. 

If the true distribution satisfies 

E[f (xt , θ0)] = 0, E[f (xt , θ)] = 0 if θ = θ0 

estimate θ0 using a sample analog of the population moments 

1 T

E�[f (xt , θ�)] ≡ f (xt , θ�) = 0
T 

t=1 

Which moments to choose for estimation? 
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Dynamic Portfolio Choice Financial Econometrics 

Parameter Estimation 
MLE 

MLE tells us that a particular choice of moments would work and would

produce the most precise estimates.


For IID observations, MLE prescribes estimating parameters as 

θ� = arg max E� [ln p(xt , θ)] 
θ 

In moment form, this implies 

T� ∂ ln p(x , θ) 
= 0 

∂θ 
t=1 

MLE is a special case of GMM with a particular choice of moments, based on 
the pdf. 
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Dynamic Portfolio Choice Financial Econometrics 

MLE for Dependent Observations 

MLE approach works even if observations are dependent. 

Consider a time series xt , xt+1, ... and assume that the distribution of xt+1 

depends only on L lags: xt , ..., xt+1−L. 

Log likelihood conditional on the first L observations: 

T −1

θ� = arg max L(θ) = arg max ln p(xt+1|xt , ..., xt+1−L; θ) 
θ θ 

t=L 

AR(p) (AutoRegressive) time series model with IID Gaussian errors: 

IID 
xt+1 = a0 + a1xt + ...apxt+1−p + εt+1, εt+1 ∼ N(0, σ2) 

Construct log likelihood: 

� (xt+1 − a0 − a1xt − ...apxt+1−p)
2 

L(θ) = 
T −1

− ln 
√

2πσ2 − 
2σ2 

t=p 
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Dynamic Portfolio Choice Financial Econometrics 

Parameter Estimation 
Iterated expectations 

Another approach to forming moment conditions is to use iterated

expectations.


For example, consider a linear model 

yt = b0 + b1xt + εt 

Assume that

E[εt |xt ] = 0


Using iterated expectations, we can form two moments 

E[(yt − b0 − b1xt ) × 1] = 0


E[(yt − b0 − b1xt ) × xt ] = 0


Recover standard OLS formulas. 

εt could be heteroscedastic, our estimator is still valid since our moment 
restrictions are valid. 
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Dynamic Portfolio Choice Financial Econometrics 

Parameter Estimation 
QMLE 

QMLE helps formulate moment conditions when the exact form of the pdf is 
not known. 

Pretend that errors are Gaussian and use MLE to form moment restrictions. 

Make sure that the moment restrictions we have derived are valid, based on 
what we know about the model. 

Intuition: we may only need limited information, e.g., a couple of moments, to 
estimate the parameters. No need to know the entire distribution. 

QMLE is a valid (consistent) approach, less precise than MLE but more

robust.


c� Leonid Kogan ( MIT, Sloan ) Review: Part II 15.450, Fall 2010 12 / 22 



�� � � �� � � 

Dynamic Portfolio Choice Financial Econometrics 

Example: Interest Rate Model 
Iterated expectations 

Interest rate model:


rt+1 = a0 + a1rt + εt+1, E(εt+1|rt ) = 0, E(ε2 
t+1|rt ) = b0 + b1rt


GMM with moment conditions derived using iterated expectations 

E [(rt+1 − a0 − a1rt ) × 1] = 0 

E [(rt+1 − a0 − a1rt ) × rt ] = 0 

E (rt+1 − a0 − a1rt )
2 − b0 − b1rt × 1 = 0 

E (rt+1 − a0 − a1rt )
2 − b0 − b1rt × rt = 0 

(a0, a1) can be estimated from the first pair of moment conditions. Equivalent 
to OLS, ignore information about second moment. 

c� Leonid Kogan ( MIT, Sloan ) Review: Part II 15.450, Fall 2010 13 / 22 



Dynamic Portfolio Choice Financial Econometrics 

Example: Interest Rate Model 
QMLE 

Treat εt as Gaussian N(0, b0 + b1rt−1). 

Construct log likelihood: 

T −1� � (rt+1 − a0 − a1rt )
2 

L(θ) = − ln 2π(b0 + b1rt ) − 
2(b0 + b1rt )t=1 

(a0, a1) can no longer be estimated separately from (b0, b1). 

Optimality conditions for (a0, a1): 

T −1� (rt+1 − a0 − a1rt )
(1, rt )

� = 0
b0 + b1rtt=1 

This is no longer OLS, but GLS. More precise estimates of (a0, a1). 

Down-weight residuals with high variance. 
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Dynamic Portfolio Choice Financial Econometrics 

GMM Standard Errors 
IID Observations 

Under mild regularity conditions, GMM estimates are consistent: 
asymptotically, as the sample size T approaches infinity, θ� θ0 (in→
probability). 

Define �

d� = 

∂E�(f (xt , θ)) ��� , S� = E�[f (xt , θ�)f (xt , θ�)�]

∂θ � � 

θ�
GMM estimates are asymptotically normal: 

√
T (θ�− θ0) ⇒ N 

� 

0, 
� 

d� �S�−1d��−1 
� 

Standard errors are based on the asymptotic var-cov matrix of the estimates, � �−1 
T Var[θ�] = d� �S�−1d�
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Dynamic Portfolio Choice Financial Econometrics

Problem

Suppose we observe a sequence of IID random variables Xt > 0,
t = 1, ...,T , with probability density

pdf (X ) = λe−λX , X > 0

1 Write down the log-likelihood function L(λ).
Compute the maximum likelihood estimate λ̂.
Derive the standard error for λ.

2

3 ̂
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Dynamic Portfolio Choice Financial Econometrics

Problem

Suppose you observe a series of observations Xt , t = 1, ...,T . You need to fit
a model

Xt+1 = f (Xt ,Xt−1; θ) + εt+1

where E[εt+1|Xt ,Xt−1, ...,X1] = 0. Innovations εt+1 have zero mean
conditionally on Xt , Xt−1,...,X1. You also know that innovations εt+1 have
constant conditional variance:

E 2 2[ε |t+1 Xt ,Xt−1, ...,X1] = σ

The parameter σ is not known. θ is the scalar parameter affecting the shape
of the function f (X ,X ; θ).t t−1

1 Describe how to estimate the parameter θ using the quasi maximum likelihood
approach. Derive the relevant equations.
Derive the standard error for θ using GMM standard error formulas.2 ̂
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Dynamic Portfolio Choice Financial Econometrics 

GMM Standard Errors 
Dependent observations 

The relation 

1 
� � �−1 

� 
1 � �−1 

Var[θ�] = d�−1S� d� � = d�S�−1d� �
T T 

is still valid. But need to modify the estimate S�. 
In an infinite sample, 

∞
S = E [f (xt , θ0)f (xt−j , θ0)

�] 
j=−∞ 

Newey-West procedure for computing standard errors prescribes 

k T� k − |j | 1 � 
S� = f (xt , θ�)f (xt−j , θ�) � (Drop out-of-range terms) 

k T 
j=−k t=1 

Of special importance: OLS with Newey-West errors. 
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Dynamic Portfolio Choice Financial Econometrics 

Additional Results


Delta method: distribution of h(θ�) is approximately 

∂h(θ�) � 
∂h(θ�)

N (h(θ), V (h)) , V (h) = V (θ�) 
∂θ� ∂θ�

Hypothesis testing: construct a χ2 test of the hypothesis h(θ) = 0 
Derive the var-cov of h(θ), V (h). 
Construct the test statistic 

ξ = h(θ�) �V (h)−1h(θ�) ∼ χ2(dim h(θ�)) 
Model selection: pick an order of the AR(p) model using an AIC or BIC 
criterion. 
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Dynamic Portfolio Choice Financial Econometrics 

Bootstrap: General Principle


Bootstrap is a re-sampling method which can be used to evaluate properties 
of statistical estimators. 

Bootstrap is effectively a Monte Carlo study which uses the empirical

distribution as if it were the true distribution.

Key applications of bootstrap methodology: 

Evaluate distributional properties of complicated estimators, perform bias 
adjustment; 
Improve the precision of asymptotic approximations in small samples 
(confidence intervals, test rejection regions, etc.) 

Bootstrap bias correction (e.g., predictive regressions): 

E θ�− θ0 ≈ ER θ�� − θ�
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Dynamic Portfolio Choice Financial Econometrics 

Boostrap Confidence Intervals


Basic bootstrap confidence interval. Nonparametric approach in IID samples. 

For non-IID samples, use parametric bootstrap. 
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Dynamic Portfolio Choice Financial Econometrics

Problem

Suppose you observe a series of observations Xt , t = 1, ...,T . You need to fit
a model

Xt+1 = f (Xt ,Xt−1; θ) + εt+1

where E[εt+1|Xt ,Xt−1, ...,X1] = 0. Innovations εt+1 have zero mean
conditionally on Xt , Xt−1,...,X1. You also know that innovations εt+1 have
constant conditional variance:

E 2[ε |t+1 Xt ,X 2
t−1, ...,X1] = σ

The parameter σ is not known. θ is the scalar parameter affecting the shape
of the function f (Xt ,Xt−1; θ).

1 Describe in detail how to use parametric bootstrap to estimate a 95% confidence
interval for θ.
Describe how to estimate the bias in your estimate of θ using parametric
bootstrap.

2
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