Introduction to Econometrics

Brandon Lee

15.450 Recitation 9

Brandon Lee Introduction to Econometrics

 Suppose x_t are IID and E [x_t] = μ. Then the Law of Large Numbers states that

plim
$$\frac{1}{T}\sum_{t=1}^{T} x_t = \mu$$

Intuitively, the LLN says that as the sample gets larger, the sample average approaches the true mean.

 The LLN is often the basis for establishing consistency of statistical estimators.

Suppose

$$y_i = x_i \beta + \varepsilon_i$$

where $E[\varepsilon_i|x_i] = 0$ (which then implies that the error term is uncorrelated to the sample: $E[x_i\varepsilon_i] = 0$)

• The OLS estimator is given by

$$\hat{oldsymbol{eta}} = ig(X'Xig)^{-1}X'y$$

• Let's verify that $\hat{\beta}$ is consistent: that is, $plim\hat{\beta} = \beta$.

Continued

Note

$$egin{aligned} \hat{eta} &= \left(X'X
ight)^{-1}X'y \ &= \left(X'X
ight)^{-1}X'\left(X'eta+arepsilon
ight) \ &= eta+\left(X'X
ight)^{-1}X'arepsilon \end{aligned}$$

Therefore,

$$plim \hat{\beta} = \beta + plim (X'X)^{-1} X' \varepsilon$$
$$= \beta + plim \left(\left(\frac{X'X}{N} \right)^{-1} \left(\frac{X'\varepsilon}{N} \right) \right)$$

문 문 문

• The key here is that $\left(\frac{X'X}{N}\right)^{-1}$ will converge to some limit and so will $\left(\frac{X'\varepsilon}{N}\right)$. But by the Law of Large Numbers, we know that

$$plim\left(\frac{X'\varepsilon}{N}\right) = E\left[x_i\varepsilon_i\right] = 0$$

Therefore,

plim
$$\hat{\beta} = \beta$$

→ < Ξ → <</p>

 Suppose that x_t is a random vector such that E [x_t] = μ and Var(x_t) = Ω. The Central Limit Theorem states that

$$\frac{1}{\sqrt{T}}\sum_{t=1}^{T}(x_t-\mu) \Rightarrow N(0,\Omega)$$

Here, the convergence is in "convergence in distribution".

 The CLT is often used to derive asymptotic distribution of statistical estimators.

Maximum Likelihood Estimator

- Having observed the sample x₁,..., x_T, we want to estimate the unknown true parameter θ₀ of the data generating process f(x; θ).
- Maximum likelihood estimation is an intuitive procedure in which the probability of observing our sample is maximized at our maximum likelihood estimate $\hat{\theta}_{MLE}$.
- Likelihood function (it is a function of the parameter θ, taking as given the sample): L(θ|x₁,...,x_T)
- Log-likelihood function (this is typically what we work with): $\mathscr{L}(\theta|x_1,...,x_T)$
- The goal is to find $\hat{\theta}$ that maximizes our (log-)likelihood function. Sometimes we can do this by finding a solution to the first order condition, but in other situations we may have to resort to numerical optimization routines.

Example: Mixture of Normals

- Assume that asset returns are IID and normally distributed, $N(\mu, \sigma^2)$. We've seen in the lectures that the MLE of μ and σ^2 are simply given by the sample mean and sample variance, respectively.
- Let's assume instead that returns are IID over time, but now drawn from a mixture of normal distributions: that is with probability λ , it is drawn from $N(\mu_1, \sigma_1^2)$ and with probability 1λ , it is drawn from $N(\mu_2, \sigma_2^2)$. This is one of the popular approaches to modelling fat-tail distributions.
- Now the parameters of the model are $(\lambda, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$.

Continued

Note that

$$f\left(R_{t}|\lambda,\mu_{1},\sigma_{1}^{2},\mu_{2},\sigma_{2}^{2}\right) \\ = \lambda \cdot \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}} e^{-\frac{(R_{t}-\mu_{1})^{2}}{2\sigma_{1}^{2}}} + (1-\lambda) \cdot \frac{1}{\sqrt{2\pi\sigma_{2}^{2}}} e^{-\frac{(R_{t}-\mu_{2})^{2}}{2\sigma_{2}^{2}}}$$

and since we have IID sample,

$$L(\lambda, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2 | R_1, \dots, R_T) = \prod_{t=1}^T f(R_t | \lambda, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$$

The log-likelihood function is given by

$$\mathscr{L}(\lambda,\mu_{1},\sigma_{1}^{2},\mu_{2},\sigma_{2}^{2}|R_{1},\ldots,R_{T}) = \sum_{t=1}^{T} \log \left(\lambda \cdot \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}} e^{-\frac{(R_{t}-\mu_{1})^{2}}{2\sigma_{1}^{2}}} + (1-\lambda) \cdot \frac{1}{\sqrt{2\pi\sigma_{2}^{2}}} e^{-\frac{(R_{t}-\mu_{2})^{2}}{2\sigma_{2}^{2}}}\right)$$

• Suppose $R_t \sim N(\mu, \sigma_t^2)$. The interesting aspect of this specification is time-varying volatility. In particular, we assume GARCH(1,1) structure:

$$\sigma_t^2 = \alpha + \beta \left(R_{t-1} - \mu \right)^2 + \gamma \sigma_{t-1}^2$$

We have in mind $\beta > 0$ and $\gamma > 0$ so that past realized and latent volatility carry over to the current period. These kinds of specifications can capture the volatility clustering we see in the data.

• The parameters of our model are $(\mu, \alpha, \beta, \gamma, \sigma_0^2)$.

• The likelihood function is given by

$$L(\mu, \alpha, \beta, \gamma, \sigma_0^2 | R_1, \dots, R_T) = \prod_{t=1}^T f(R_t | \mu, \alpha, \beta, \gamma, \sigma_0^2; R_1, \dots, R_{t-1})$$
$$= \prod_{t=1}^T \frac{1}{\sqrt{2\pi\sigma_t^2}} e^{-\frac{(R_t - \mu)^2}{2\sigma_t^2}}$$

Note that σ_t^2 is included in the information set (R_1, \ldots, R_{t-1}) .

• Optimizing this objective function cannot be done analytically because evolution of σ_t^2 depends on all the parameters in a non-trivial manner. We have to resort to numerical methods to find the optimum.

15.450 Analytics of Finance Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.