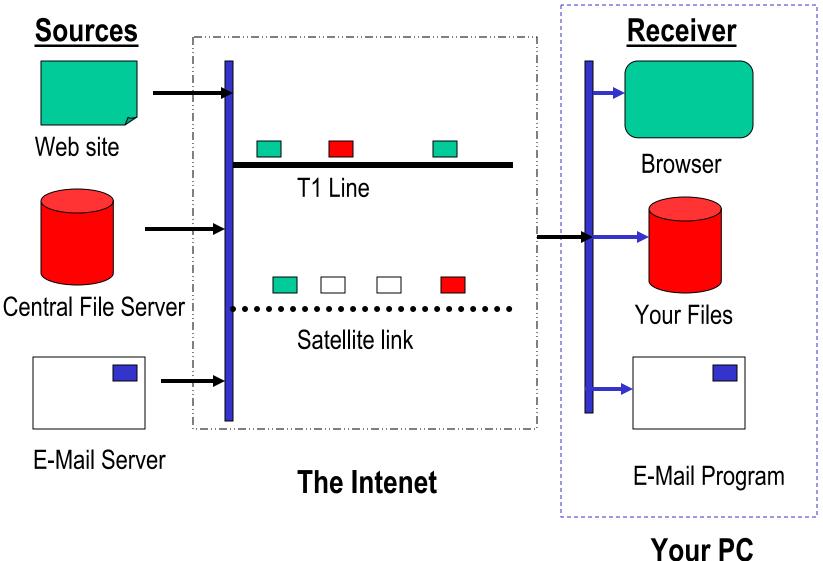
MASSACHUSETTS INSTITUTE OF TECHNOLOGY SLOAN SCHOOL OF MANAGEMENT

<u>15.565</u> Integrating Information Systems: Technology, Strategy, and Organizational Factors


<u>15.578</u> Global Information Systems: Communications & Connectivity Among Information Systems

Spring 2002

Lecture 9

NETWORK PROTOCOLS

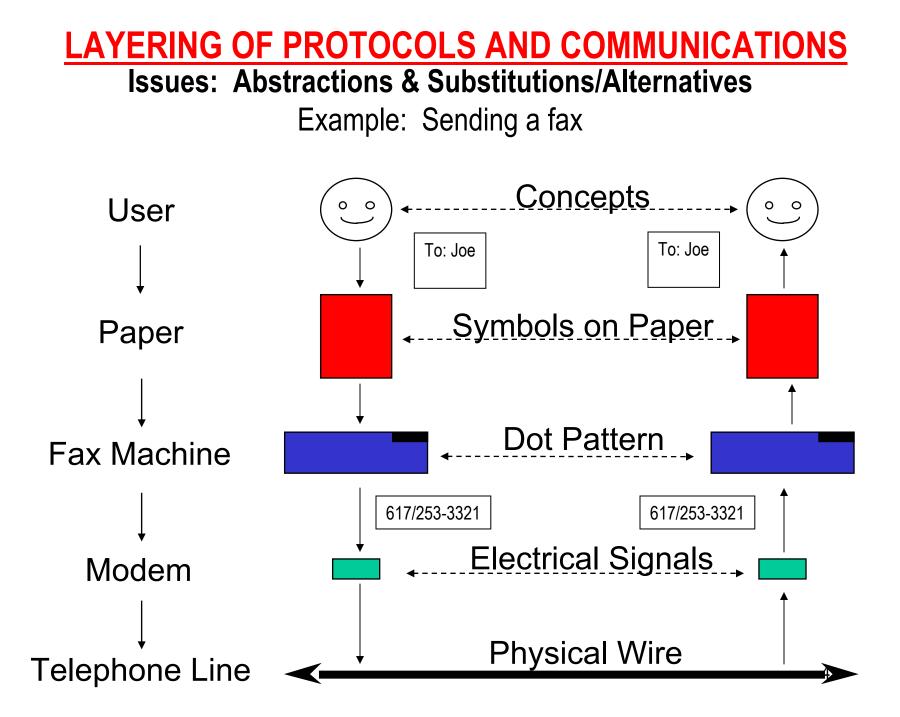
COMPLEXITY OF COMMUNICATION NETWORKS

ROLE OF PROTOCOLS

EXAMPLES FROM NORMAL TELEPHONE CONVERSATION

- ASSUMING SENDER (S) AND RECEIVER (R) SPEAK ENGLISH ITSELF A PROTOCOL ISSUE
- ESTABLISHING CONNECTON:

S: "IS JOHN THERE?" R: "YES, THIS IS JOHN."

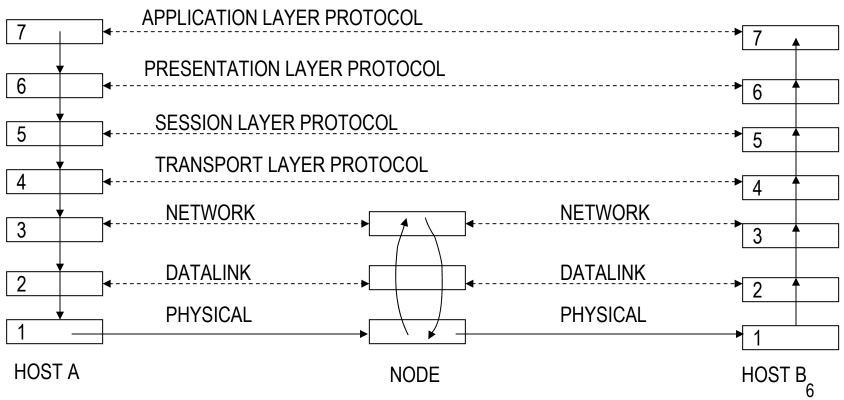

• ERROR CHECKING:

S: "DID YOU HEARD WHAT I JUST SAID?" R: "YES."

• FLOW CONTROL (E.G., DICTATING LETTER OVER PHONE): S: "ARE YOU READY FOR NEXT SENTENCE?" R: ... pause ... "YES."

BOTH SENDER AND RECEIVER MUST FOLLOW SAME RULES.

• OTHER EXAMPLES ?


ISO OSI REFERENCE MODEL

- ISO = INTERNATIONAL STANDARDIZATION ORGANIZATION
- OSI = OPEN SYSTEMS INTERCONNECTION
- ISO OSI REFERENCE MODEL:
 - -- IS A FRAMEWORK AND SET OF NOMENCLATURE
 - -- <u>IS NOT</u> A PROTOCOL STANDARD
- STANDARDS DEVELOPERS:

CCITT, IFIP, ANSI, IEEE

ISO REFERENCE MODEL FOR OSI

- 7. APPLICATION: APPLICATION DEPENDENT (E.G., USER PROGRAM)
- 6. **PRESENTATION**: COMPRESSION AND CONVERSIONS (E.G., LIBRARY)
- 5. <u>SESSION</u>: PROCESS-TO-PROCESS (E.G., OS SOFTWARE)
- 4. TRANSPORT: HOST-TO-HOST (E.G., OS SOFTWARE)
- 3. <u>NETWORK</u>: ROUTING (E.G., DEVICE DRIVER)
- 2. **DATA:** RELIABLE BIT STREAM (E.G., SPECIAL CHIP)
- 1. PHYSICAL: RAW BIT STREAM (E.G., HARDWARE)

THE SEVEN-LAYER ISO REFERENCE MODEL

SIMPLE MAIL DELIVERY ANALOGY

- 7. <u>APPLICATION</u>: SPECIFIC HANDLING (e.g., PAY BILL, INQUIRY)
- 6. <u>PRESENTATION</u>: LANGUAGE TRANSLATION SERVICE
- 5. <u>SESSION</u>: GROUP IN COMPANY (e.g., A/P) or PERSON (e.g., E53-321)
- 4. **TRANSPORT**: SOURCE COMPANY TO RECEIVER COMPANY
- 3. <u>NETWORK</u>: ROUTING FROM POST OFFICE TO POST OFFICE
- 2. **DATA**: FLOW CONTROL AND TRAFFIC HANDLING ON HIGHWAY
- 1. PHYSICAL: TRUCKS AND PLANES USED
- MUST USE SAME STANDARDS

1. PHYSICAL LAYER

- SUBNET TYPES
 - CIRCUIT SWITCHING (DEDICATED CHANNEL)
 - MESSAGE SWITCHING
 - PACKET SWITCHING (SHARED CHANNEL)
- COMMUNICATION TECHNOLOGIES (SOME EXAMPLES)
 - TELEPHONE
 - T1 = 1.544M bps (USA & CANADA) OR 2.048M (ELSE)
 - SHARED CABLE (ETHERNET)
 - 10-100M bps (Typical)
 - CSMA/CD (CARRIER SENSE MULTIPLE ACCESS/COLLISION DETECT)
 - SATELLITE
 - 5-10 CHANNELS, EACH 50M bps
 - UP-LINK & DOWN-LINK = 270 MILLISECONDS
 - VSAT
 - FIBER-OPTIC
 - 100M 10G bps (Typical)
 - INTERNET II (622M -> 2G)
 - PROJECT OXYGEN = 1.28T bps (before 2003)

FOCUS: RELIABLE TRANSMISSION: ERROR HANDLING & FLOW CONTROL

ERROR HANDLING: DETECTION AND CORRECTION

CHECK SUM FOR ERROR DETECTION (AND OTHER ERROR DETECT/CORRECT CODES)

BEGIN CODE					END CODE
01111110	ADDRESS	CONTROL	INFORMATION	CHECKSUM	01111110
8	8	8	?	16	8

FLOW CONTROL

- TO HANDLE CONGESTION & SEQUENCING
- RECEIVER INDICATES WILLINGNESS TO RECEIVE
 - LIKE RESERVATION FOR DINNER
- POSITIVE AND NEGATIVE ACKNOWLEDGEMENTS TO RECEIPT
 - SEQUENCE NUMBERS TO HELP KEEP COORDINATED
 - RECYCLE SEQUENCE NUMBERS
- MAY HAVE MULTIPLE OUTSTANDING MESSAGES
 - ESPECIALLY FOR SATELLITE -- 1/4 SEC ROUND TRIP
 - TYPES OF INFO USED:
 - SEQUENCE (THIS FRAME)
 - P/F (POLL OR FINAL)
 - NEXT (ACK RECEIVED UP TO)

DYNAMIC CHANNEL SHARING

- SATELLITE
 - MULTIPLEX (TIME OR FREQUENCY)
 - "SLOTTED" ALOHA (PRE-DATES ETHERNET)

- EACH "SLOT", EITHER SEND OR NO SEND
- IF SEND, LISTEN FOR COLLISION (270 MS)
- IF COLLIDE, TRY AGAIN LATER -- BUT WHEN?
- "BEST ATTAINABLE UTILIZATION" ABOUT 37%
- SIMILAR FOR SHARED LAN (E.G., ETHERNET)
- IEEE 802 STANDARDS
 - MEDIA ACCESS: CSMA/CD AND TOKEN RING

HAWAII

TOKYC

SF

3. NETWORK LAYER

ROUTE DETERMINATION (TO BE DISCUSSED MORE LATER)

- VIRTUAL CIRCUIT
- vs DATAGRAM
- E.G., X.25 NETWORK CCITT 3-LAYER PROTOCOL
- -- VIRTUAL CIRCUIT ORIGINALLY
- PROCEDURE
 - SET UP VIRTUAL CIRCUIT (CALL REQUEST)

 RECEIVER ACCEPTS OR REJECTS

 IF ACCEPT, SEND DATA PACKETS (FULL-DUPLEX)
 TERMINATE BY EITHER PARTY
- EXTENSIONS
 - -- DATAGRAM
 - -- FAST SELECT (ONE PACKET MESSAGE)

4. TRANSPORT LAYER

- PROVIDE "TRANSPARENT" USER-TO-USER (END-TO-END)
- HANDLE RECOVERY, ETC. TRANSPARENTLY
- EXAMPLE FUNCTIONS: CONNUM = CONNECT (LOCAL, REMOTE) CONNUM = LISTEN (LOCAL) STATUS = CLOSE (CONNUM) STATUS = SEND (CONNUM, BUFFER, BYTES) STATUS = RECEIVE (CONNUM, BUFFER, BYTES)
- CCITT STANDARD X.25 ADDRESS = 14 DIGITS
 - -- 3 = COUNTRY (MAYBE MULTIPLE CODES)
 - -- 1 = COUNTRY NET
 - -- 10 = NETWORK OPERATOR CHOICE
 - (E.G., 5 = HOST #, 5 = USER #)

SYNCHRONIZATION AND MULTIPLEXING ISSUES

- SYNCHRONIZATION ISSUES:
 - -- UNEXPECTED MESSAGE RECEIVED
 - -- MULTIPLE PACKETS (DUE TO TIME-OUT & RETRANSMIT)
 - -- CLOSING CONNECTIONS

(E.G., TWO ARMY DIVISION PROBLEM: "YOU ATTACK WHEN YOU GET MY MESSAGE")

- -- NEED TO HANDLE THESE CASES
- CONNECTION MULTIPLEXING
 - -- TO SHARE "VIRTUAL CIRCUIT"
 - FOR EFFICIENCY/COST SAVINGS
 (LIKE SOFTWARE MULTIPLEXING)
 - -- TO USE MULTIPLE "VIRTUAL CIRCUITS"
 - FOR INCREASED TRANSMISSION CAPACITY

5. SESSION LAYER

 PROVIDE PROCESS-TO-PROCESS COMMUNICATION (E.G., WEB BROWSER VS. FILE TRANSFER VS. E-MAIL -- SIMULTANEOUS)

6. PRESENTATION LAYER

- TYPICAL ACTIVITIES
 - -- TEXT COMPRESSION & ENCRYPTION (OFTEN AT DATA LAYER)
 - -- CONVERSION
- "VIRTUAL" TERMINAL PROTOCOLS
 - -- MANY TERMINAL DIFFERENCES
 - -- TYPES: SCROLL, PAGE (CURSOR), FORM (E.G. ARPANET TELNET)
 - -- E.G., X-WINDOWS
- FILE TRANSFER PROTOCOLS
 - -- BIT-FOR-BIT OR CONVERTED?

(E.G. ASCII - > EBCDIC, FLOATING POINT #'s)

7. APPLICATION LAYER

• ELECTRONIC MAIL, WEB BROWSER & OTHERS

Layer	ISO	INTERNET	SNA	DECNET
7	Application	User	End user	
6	Presentation	Telnet, FTP, Web	NAU services	Application
5	Session		Data flow control	
		Transmission Control	Transmission control	
4	Transport	Internet Protocol		Network services
3	Network		Path control	Transport
5	Network	Network Access		
2	Data link		Data link control	Data link control
1	Physical	Physical	Physical	Physical

Approximate correspondences between the various networks.

TCP/IP Protocol Architecture

Application layer

Provides communication between applications on separate machines (e.g., email, file transfer, web browsing)

Transport layer

Provides end-to-end reliable data transfer across multiple networks (e.g., TCP - Transmission Control Protocol)

Internet layer

Routes data from source to destination through one or more networks (IP - Internet Protocol)

Network access layer

Manages logical interface between a machine and its local network (e.g., Ethernet)

Physical Layer

Converts bits to signals and back (e.g., wires, radio, etc.)