760 Class #13: JUST-IN-TIME/TPS

- 1. Admin:
- 2. What are the principles of TPS?
- 3. Why are they so hard to copy & get right?
- 4. What is the nature of TMM-Georgetown's seat problem.
- 5. What should they do?

JUST-IN-TIME PRODUCTION OBJECTIVE:

-Constant Improvement of the Production/Delivery System, as measured by <u>Quality</u>, <u>Cost</u>, <u>Lead Times</u>, <u>Service</u>, <u>Flexibility</u>

METHOD:

-Simplify the Production System

-Rapid Feedback on Problems Thru Tightly Integrated Production

-Pull System for Inventory Control

- -Exploratory Stress to Drive Improvement
- -Effective Management of Capital Equipment

SIMPLIFY THE PRODUCTION SYSTEM

Fewer Suppliers **Reduced Parts Counts Focused Factories** Scheduling by rate, not lots **Fewer storage containers More Frequent Deliveries Smaller Plants Shorter Distances** Less Reporting **Fewer Inspectors** Less Buffer Stock Fewer Job Classifications

RAPID FEEDBACK "A DEFECT IS A TREASURE"

ACTION STEPS:

1. REMOVE FEEDBACK DELAYS --ESPECIALLY WIP INVENTORIES

2. LINE WORKERS STOP PRODUCTION WHEN PROBLEMS ARISE

BENEFITS:

INSTANT FEEDBACK TO PROBLEM SOURCE

JOB ENRICHMENT -UTILIZE MENTAL POWERS

INCENTIVES TO AVOID DEFECTS -CAUSE IS EASILY TRACEABLE PULL SYSTEM FOR PRODUCTION AND INVENTORY CONTROL

PRODUCE EXACTLY -WHAT IS NEEDED -WHEN IT IS NEEDED

KANBAN OR CARD CONTROL REPLACES COSTLY COMPUTERIZED PLANNING AND TRACKING SYSTEM

PROBLEMS ARE QUICKLY FELT THROUGHOUT THE SYSTEM

ELIMINATES JUST-IN-CASE INVENTORIES

REQUIRES

- -FLEXIBILITY
- -FAST CHANGEOVERS
- -SMALL LOT SIZES

EXPLORATORY STRESS TO DRIVE IMPROVEMENT

TO EXPOSE PROBLEMS

REDUCE BUFFERS REDUCE CYCLE TIME TARGETS REDUCE LABOR ALLOCATIONS

PROBLEM EXPOSURE DRIVES EMPLOYEES TO WORK ON

SETUP REDUCTION VARIABILITY REDUCTION CYCLE TIME REDUCTION

MANAGING CAPITAL EQUIPMENT

TOTAL PREVENTIVE MAINTENANCE

-ASSURES BETTER UPTIME RELIABILITY -OFTEN PROVIDES MORE TOTAL UPTIME -OPERATORS PERFORM REGULAR MAINT.

PRE-AUTOMATION

-PRODUCT DESIGN FOR ASSEMBLY -REDUCE PARTS COUNT -UTILIZE MODULARITY -SET SPECICATIONS EFFICIENTLY Know cust. needs and mfg capability

-PROCESS DESIGN FOR ASSEMBLY -REDUCE FLOW DISTANCES -UTILIZE FAIL-SAFE DEVICES -LOCATE TOOLS CONVENIENTLY -STREAMLINE BEFORE AUTOMATING

ADD CAPITAL INCREMENTALLY

-SEVERAL SMALL MACHINES MORE FLEXIBLE -MATCH SUPPLY WITH DEMAND -LESS CYCLE INVENTORY NEEDED

-MOVABILITY PERMITS DEDICATED CELLS

JIT IMPLEMENTATION ISSUES

- INVENTORY AS A SECURITY BLANKET
 REDUCE INVENTORY CARRYING COSTS VS.
- **REDUCE SOURCES OF VARIABLIITY**
- **3. SUPPLIER MANAGEMENT**
 - -BULLYING VS. COOPERATION -HOW TO SHARE THE PAINS & GAINS -GET OWN HOUSE IN ORDER FIRST?
- 4. PHYSICAL DISTANCES -BETWEEN PLANTS -BETWEEN WORKSTATIONS
- 5. COOPERATIVE EFFORTS AMONG -MANUFACTURING -MARKETING -PURCHASING -ENGINEERING
- 6. PATIENCE

The Logic and Processes of JIT Improvement Quality **Problems** Qual. Imp. **Processes Setup Times & Problem System Setup Costs Invisibility** Variability P{D≤μ+kσ}=Cu/(Co+Cu) L≈ $\frac{\rho^2 [\sigma_A^2 + \sigma_S^2]/2}{(1-\rho^2) [\mu_A^2 + \mu_S^2]}$ Rapid **Inventories &** EOQ = <u> 2RS</u> Feedback **Lead Times** $L = \lambda W$

See Karmarkar: Getting Control of JIT, HBR, Sept-Oct 1989