Retrospective: Introduction to Operations Management

Process Design & Management

- Process Design: Options & Assessment
 - -Queueing Analysis
 - -Capacity Analysis
 - How did Nokia assess capacity in the crunch? How did they change capacity? -Uncertainty Analysis
 - How did each company prepare for difficult-to-anticipate events?

Inventory Systems

•Did N&E operate Just-in-Time, or did they hold big stores of chips waiting just in case?

Production Control

Was Nokia's software the principal instrument of control? How did they monitor the situation?

ERP/Software/Internet

•Was Nokia's software the principal instrument of communication?

- Operations Excellence
 - Continuous Improvement
 - Just-in-Time
 - Quality Management (SPC, 6σ)

Challenges of Service Interface: Grocery Stores vs. Webvan

- Intangibility customer expectations vs. perceptions
 - Grocery Stores: quality, selection, <u>ENVIRONMENT</u>
 - Webvan: quality, selection, <u>DELIVERY</u>
- Perishability use it or lose it
 - Grocery Stores: fresh foods (produce, meats, baked goods)
 - Webvan: fresh foods & <u>TRUCK CAPACITY</u>
- Heterogeneity inherent variability of service & customer
 - Grocery: checkout people, counter people, customer needs
 - Webvan: DELIVERY PERSON
- Simultaneity services simultaneously produced & consumed
 - Grocery: presentation in the store
 - Webvan: DELIVERY TO THE HOME

Supply Chain

Strategic Supply Chain Design Make Vs. Buy Did sourcing strategy play a role in the differential performance of N & E? Supplier Selection , Sourcing Supply Chain Management End-to-end coordination Do we see here examples of integrated enterprise? Supplier Relations hard-nosed, polite, hostile, collaborative?

Restaurant Operations Management

- 1. What are the key **DESIGN** parameters for Burger King?
 - A. Product
 - **B.** Process Technology
 - C. Facility
 - **D. Work System/HR System**
- 2. What are the key **PLANNING** tasks for Burger King?
 - A. Supply
 - **B.** Demand
 - C. Capacity/Workload
- 3. What are the key **CONTROL** processes for Burger King?
 - **A. Production Control**
 - **B.** Quality Control
 - **C. Process Control**
- 4. What are the key **IMPROVEMENT** processes for BK?
 - A. Quality Improvement
 - **B.** Productivity Improvement
 - **C. Technological Improvement**
 - **D.** Systems Improvement

Volatility Amplification in the Supply Chain: "The Bullwhip Effect"

How does production control work in the Beer Game?

Information lags Delivery lags Over- and underordering Misperceptions of feedback Lumpiness in ordering Chain accumulations

SOLUTIONS:

- Countercyclical Markets
- Countercyclical Technologies
- Collaborative channel mgmt. (Cincinnati Milacron & Boeing)

ROP=Reorder Point = Expected Demand During the order lead time + safety stock = E{DDL} + SS

Prob {**DDL** \leq **ROP**} = **Cu**/(**Co**+**Cu**)

Cu=Cost of Underage (*r-c* in newsvendor); Co=Cost of Overage (*c* in newsvendor) But, Co with nonperishables is c x cost of holding ROP=SS+E{DDL}; DDL = X1 + X2 + . . . + XL; E{DDL} = E{L} x E{X} i.e., DDL has a mean of Expected lead time x Expected avg demand/unit time Variance{DDL}~Var{X} x E{L} + Var{L} x E{X²}

15.760 Class #8: Basic Concepts in Queueing

System Performance = f(System parameters)

Output/throughput rate Inventory Level/Queue Size/ Line length Waiting Time/Cycle Time Capacity or Server utilization Probability that Queue is full [λ]

-	•	
	W	

[ρ]

(P_{full})

	Arrival rate	[λ]
•	Service rate	(μ)
J	Service time	(ⁱ M
) Numb Queue	Number of servers	[S]
	Queue/Buffer capacity	(R)
	Capacity or Server utilization	[₀]
]	Number of Service classes	(K

Fish Processing Example

ASSUMPTIONS OF THE QUEUEING MODELS

Poisson arrivals/exponential service times steady state

 ρ < 1, when computing the queue lengths and waiting times

Constant # of servers

FIFO service

Single-line queue (to MD's)

Infinite queue capacity

Ignore special priority emergencies

Ignore special priority requests

(Arrival Rate / Service Rate = ρ) = "congestion"

- 1. Unoccupied time feels longer than occupied time
- 2. Process waits feel longer than in process waits
- 3. Anxiety makes waits seem longer
- 4. Uncertain waits seem longer than known, finite waits
- 5. Unexplained waits are longer than explained
- 6. Unfair waits are longer than equitable waits
- 7. The more valuable the service, the longer the customer will wait
- 8. Solo waits feel longer than group waits

What is the Purpose and Logic of MRP ?

Clockspeed:

The Dimension of Time on Operations Management Study the Industry Fruitflies

Evolution in the natural world:

FRUITFLIES evolve faster than MAMMALS evolve faster than REPTILES

THE KEY TOOL:

Cross-SPECIES Benchmarking of Dynamic Forces **Evolution** in the industrial world: **INFOTAINMENT** is faster than **MICROCHIPS** is faster than **AUTOS** evolve faster than **AIRCRAFT** evolve faster than MINERAL EXTRACTION THE KEY TOOL: **Cross-INDUSTRY** Benchmarking of Dynamic Forces

TQM 15.760, Spring 2002

TOTAL QUALITY MANAGEMENT

FOUR LEVELS OF QUALITY

FOUR THOUGHT REVOLUTIONS

- Customers first
- **Continuous Improvement**
- **Total Participation**
- **Societal Learning**

ORGANIZATIONAL MANAGEMENT

Information & Measurement Systems Education Incentive Systems Organizational Change

The Logic and Processes of JIT Improvement

See Karmarkar: Getting Control of JIT, HBR, Sept-Oct 1989

From Reengineering to Process Management and Beyond

or

In the Footsteps of the Buffalo Springfield

"Something's happening here; what is ain't exactly clear . . . "

MIT Sloan School Dr. Michael Hammer March 2002

Summary: Seven Things to Remember

- Process
- Process redesign
- Process evolution
- Process enterprise
- Process ownership
- Process as universal enabler
- Process integration across enterprise boundaries

Operations Lessons from The Goal

Measuring Operations Performance
 Flow System management
 Bottleneck Management

HP Supply Chain Problems

- Long chain with bullwhip
- local customization needs with unpredictable demands

Postponing customization allows inventory pooling which provides greater Coverage with less stock

Possible solutions:

- •Air Ship
- Europe Factory
- Universal Model
- Better Forecast
- Product Line change
- Shorten Review Period
- More Inventory

A thumbnail sketch of the 20th century's big ideas in operations management

1920's: Ford & Taylor Moving Production line and standardized work 1930's: Shewhart Statistical Control of Quality 1960's: Ohno **Lean Production System 1980's: Goldratt & Kaplan Measurement & Theory of Constraints 1990's: Hammer Reengineering & Process Focus**

- Focus

- Architecture
- Technology

A 3-D CE decision model illustrating the *imperative* of concurrency

All Conclusions are *Temporary*

Clockspeeds are increasing almost everywhere

Supply Chain Relationships must anticipate Industry and Value Chain Dynamics

Proactive Relationships Design is a key organizational competency

Supply Chain Relationships must be designed concurrently with the products and systems they will deliver

Study of Fruit Flies can help with crafting strategy