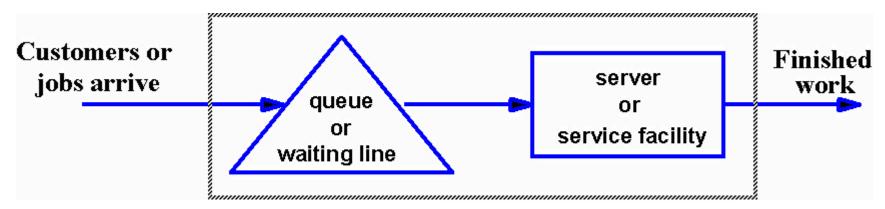
15.760 Class #8: Basic Concepts in Queueing



System Performance = f(System parameters)

Output/throughput rate Inventory Level/Queue Size/ Line length Waiting Time/Cycle Time Capacity or Server utilization Probability that Queue is full [λ]

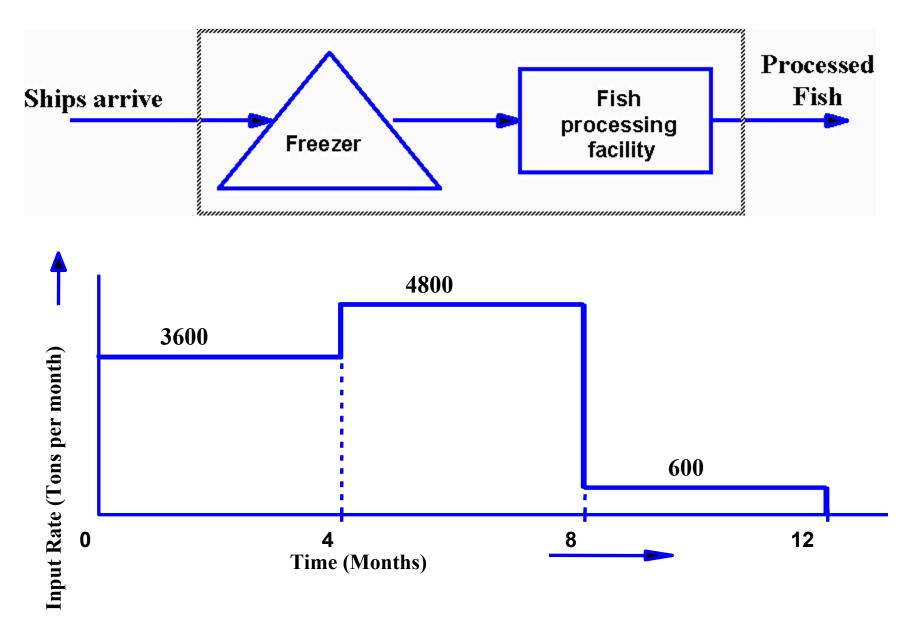
L	

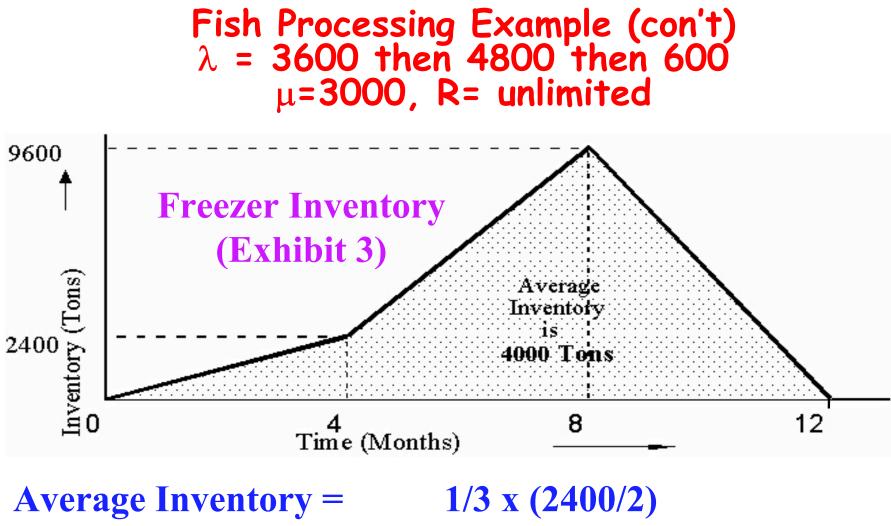
- (W)
- **(**ρ**)**

(P_{full})

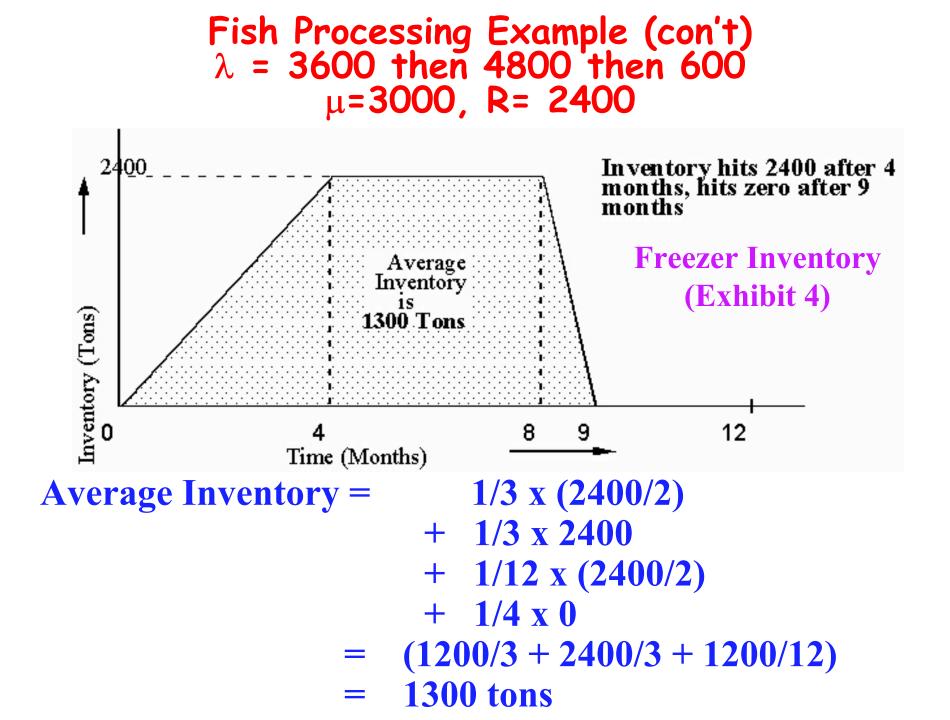
Arrival rate	[λ]
Service rate	(μ)
Service time	(M
Number of servers	[S]
Queue/Buffer capacity	(R]
Capacity or Server utilization	[ρ]
Number of Service classes	(K)

Fish Processing Example

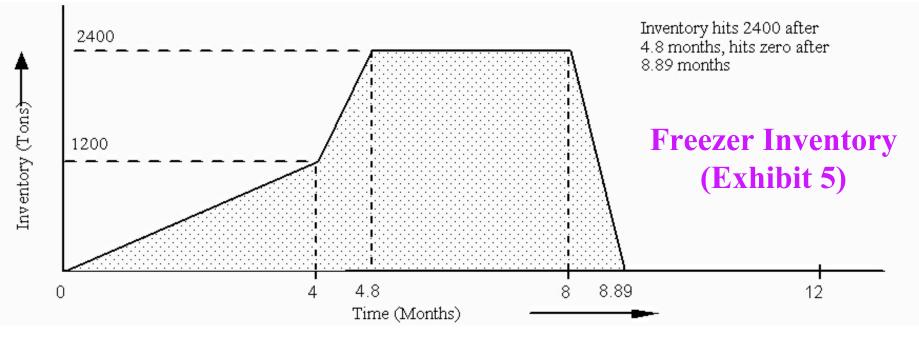




 $+ \frac{1}{3} \times \frac{(9600 + 2400)}{2} + \frac{1}{3} \times \frac{(9600/2)}{(1200 + 6000 + 4800)}$ = $\frac{(1200 + 6000 + 4800)}{3}$ = 4000 tons



Fish Processing Example (con't) λ = 3600 then 4800 then 600 μ =3300, R= 2400



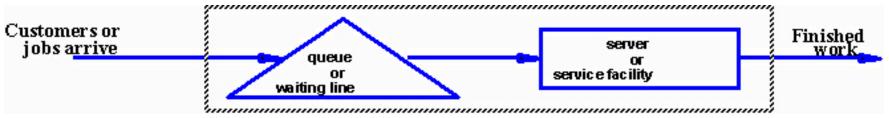
Average Inventory =

 $\frac{1/3 \text{ x } (1200/2)}{+ .8/12 \text{ x } 1800}$ + 3.2/12 x (2400)+ .89/12 x (2400/2)(200 + 120 + 640 + 89)1049 tons

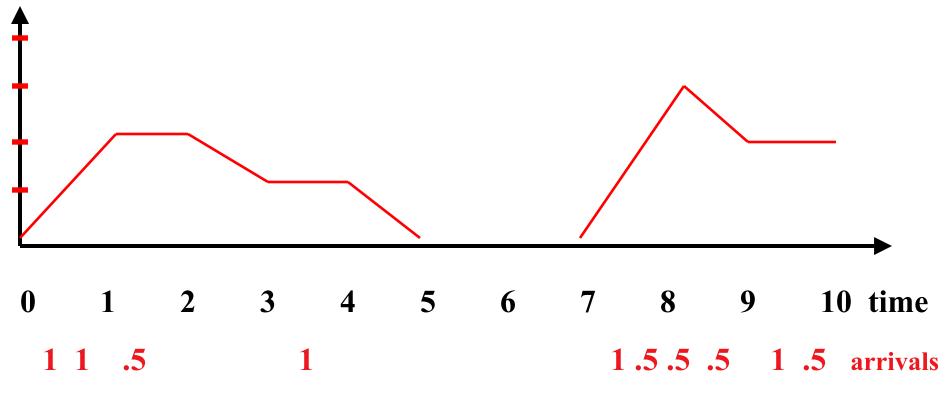
Fish Processing Example (con't) $\lambda = 3600$ then 4800 then 600 Average Thruput Capacity **Inventory per month Utilization** μ=**3000**, **R**=∞ 3000 (.63) **4000 tons** 100% μ=**3000**, R= **2400** 1300 tons 2400 (.63) 80% μ=**3300**, R= **2400** 2600 (.63) 79% **1049 tons**

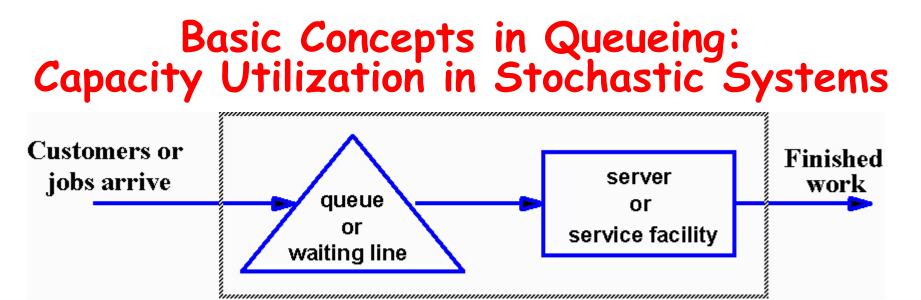
Tradeoffs: Cost of processing capacity vs. Cost of Storage Capacity vs. Value of output (net of holding costs)

Basic Concepts in Queueing: Capacity Utilization in Stochastic Systems



Suppose avg arrival rate = 1/minute Avg service rate = 1.33/minute (or avg service time = 45 seconds)



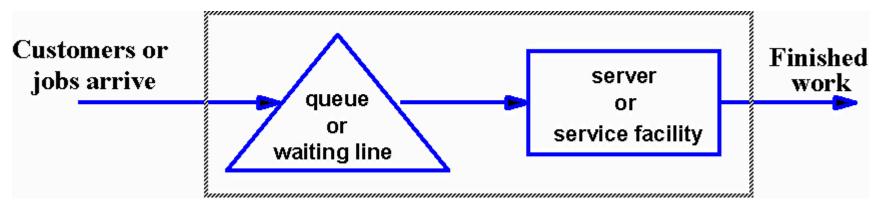


System Performance = f(System parameters)

Capacity or Server utilization

$$\label{eq:rate} \begin{split} \rho &= \lambda \; / \; \mu \; (\text{arrival rate/service rate}) \\ \rho &= \; \lambda \; \tilde{(S \; x \; \mu)} \\ \rho &= \; \lambda \; X \; \textbf{M} \end{split}$$

Basic Concepts in Queueing: Little's Law



System Performance = f(System parameters)

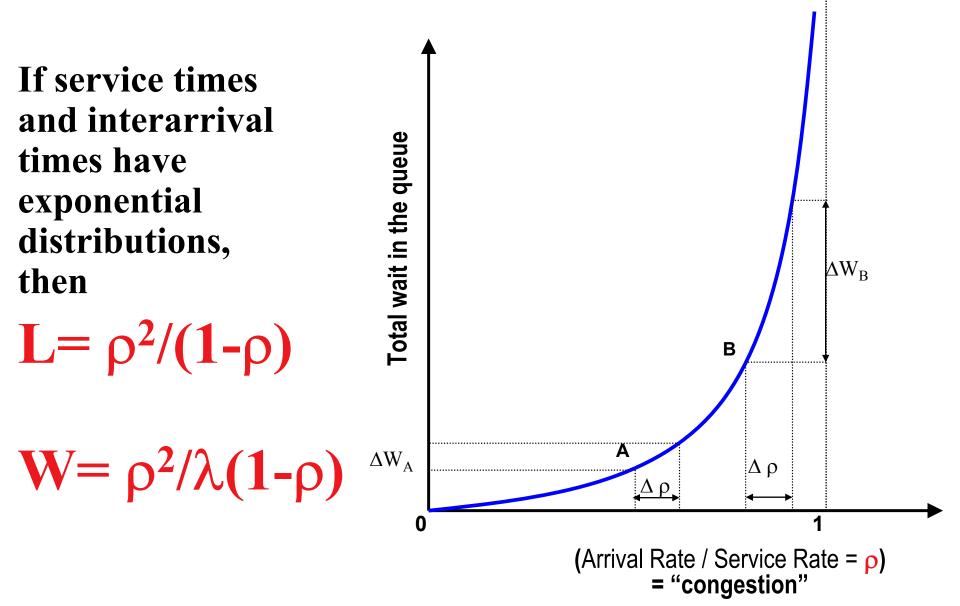
Conservation of Flows in Stochastic Systems

$L = \lambda X W$

Avg Length of the Queue = Arrival rate x Avg Waiting time

600 MBA's = 300/year x 2 years

Basic Concepts in Queueing: Nonlinearities in Congestion in Stochastic Systems



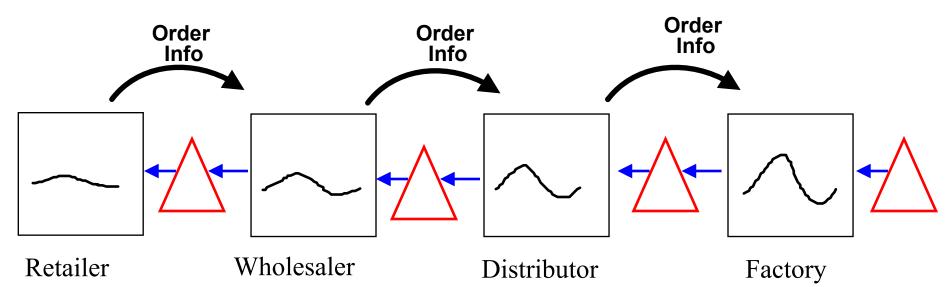
Basic Concepts in Queueing: Nonlinearities in Congestion in Stochastic Systems

System Performance = f(System parameters)

With exponential (λ) interarrivals, and service times with mean = M and std dev = σ , Then

$$W = \frac{\lambda (M^2 + \sigma^2)}{2(1-\rho)}$$

Volatility Amplification in the Supply Chain: "The Bullwhip Effect"



How does production control work in the Beer Game?

Information lags Delivery lags Over- and underordering Misperceptions of feedback Lumpiness in ordering Chain accumulations

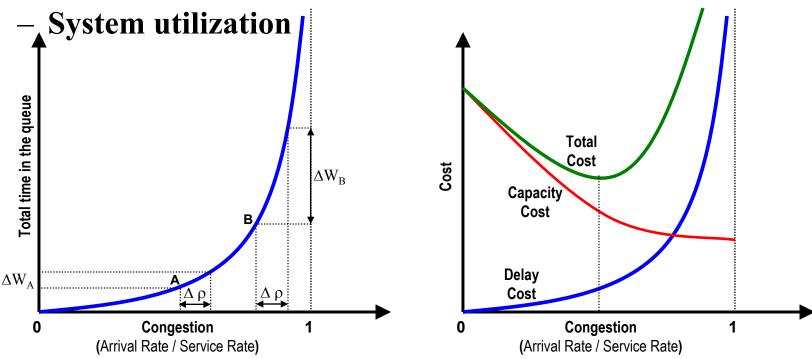
SOLUTIONS:

- Countercyclical Markets
- Countercyclical Technologies Collaborative channel mgmt.
- (Cincinnati Milacron & Boeing)

Management of Queues

The Physics of Waiting Lines

- Number and type of servers
- Waiting time, service time, and system time
- Queue discipline
- Number of people in queue



Management of Queues

Propositions

- 1. Unoccupied time feels longer than occupied time
- 2. Process waits feel longer than in process waits
- 3. Anxiety makes waits seem longer
- 4. Uncertain waits seem longer than known, finite waits
- 5. Unexplained waits are longer than explained
- 6. Unfair waits are longer than equitable waits
- 7. The more valuable the service, the longer the customer will wait
- 8. Solo waits feel longer than group waits