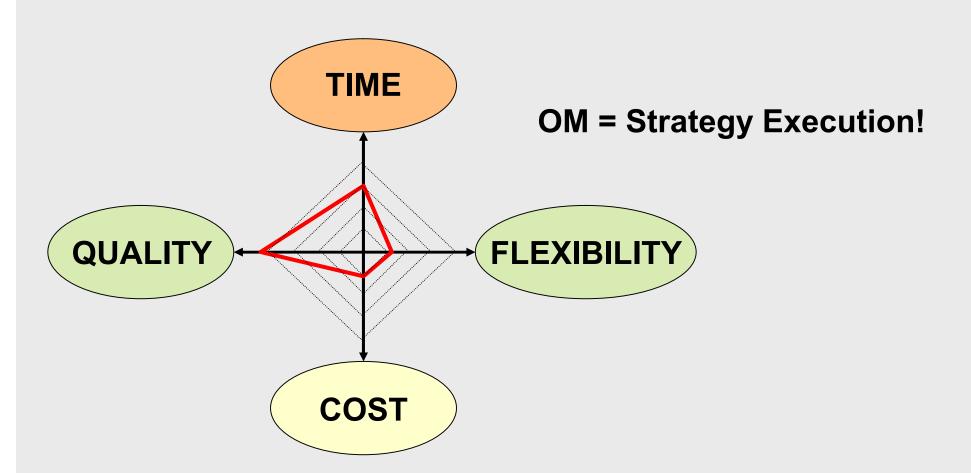
15.760 Introduction to Operations Management

Professor Jérémie Gallien Operations Management Group, MIT Sloan School of Management


Bio

- French, Eng.D in Production Systems from Ecole des Mines de Paris
- PhD (2000) in Operations Research from MIT
- Research: Online sales channels, dynamic pricing, e-procurement, manufacturing revenue management, order fulfillment, product introduction
- Experience in Electronics, Aeronautics,
 Transportation and Software

Class Outline

- Class Introduction: Concepts & Outline
- Organization
 - Material
 - Assignments/Grading

What is Operations Management?

Why Study OM (1)?

Dell Vs. Compaq, HP

Toyota Vs. Ford, GM

Amazon Vs. Barnes & Noble

JetBlue, Southwest Vs. American Airlines

Why Study OM (2)?

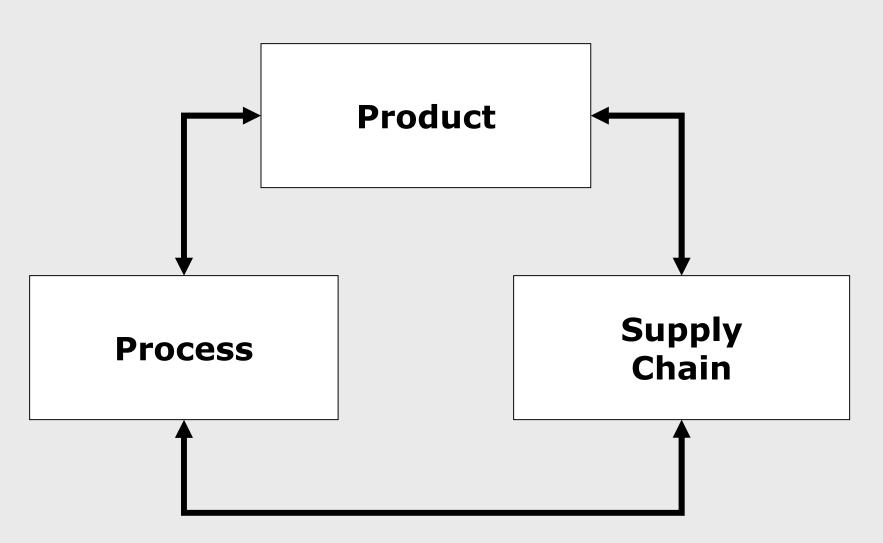
Corporate Structure

Top Management speaks the language of MONEY

Mid-Mgt., Associates, Workers speak the language of THINGS

OM merges physical and financial analyses, and requires great care to people issues!

Why Study OM (2)?


Set of responsibilities:

- 1. DESIGN
- 2. PLANNING
- 3. CONTROL
- 4. IMPROVEMENT

Why Study OM (3)?

- Boeing
- Microsoft
- Intel
- Massport
- Johnson & Johnson
- Southwest
- Lucent Technologies
- Amazon
- United Technologies
- AT Kearney
- Dell
- PRTM
- McKinsey & Company

Components of Operations Management

Product Definition

- Product Type (Good or Service)
- Strategic Positioning
- Product Architecture

Service Vs. Manufacturing Operations

Intangibility (Explicit and Implicit)

"We manufacture perfume; we sell Hope"
PERCEPTION Vs. EXPECTATION, ADVERTISE & MATERIALIZE

Perishability (no inventory buffer)

Can't inventory seating room!

CAPACITY PLANNING/FLEXIBILITY, PREVENTION/CULTURE

Heterogeneity (supply and demand variability)

Consider medical service delivery!

HIRING, TRAINING, PLANNING, CUSTOMIZATION

• Simultaneity (of production and consumption)

No safety nets for quality problems...

HIRING, TRAINING, HR, PLANNING, CONCURRENT ENGINEERING

Process Definition

- Type (Discrete or Continuous)
- Process Architecture
 - Technology

 - Physical FlowInformation Flow

Process Flow Diagram

Supply Chain Definition

- Supply Chain Architecture
 - Physical & Information Flow
 - Integral/Modular Relationships
 - Incentives
- Coordination
 - Delivery
 - Inventory
 - Information Systems

Class 1 Wrap-Up

- 1. Operations Management = Strategy Execution
- 2. Strategic Product Definition:

Quality + Cost + Time + Flexibility

3. Operations Management Components:

Product Devlpt. + Process + Supply Chain

4. Operations Management Activities:

Design + Planning + Control + Improvement

5. <u>Service Operations Features:</u>

Intangibility + Perishability + Heterogeneity + Simultaneity

Course at-a-glance

#	Day	Date	Contents	Readings	Assignments	Sim
1	Mon	29-Mar	Course Introduction	Course Syllabus		
2	Wed	31-Mar	Case: Burger King + McDonald's	Types of processes		
3	Fri	2-Apr	Lecture: Capacity	Wait-in-line blues	1 Ex. Buildup, 1 Ex. Queueing	
4	Mon	5-Apr	Case: National Cranberry			
5	Wed	7-Apr	Case: Webvan			
6	Fri	9-Apr	Lecture: Inventory	Automate or Die	1 Ex. EOQ, 1 Ex. Newsboy	
7	Mon	12-Apr	Case: Barilla	Managing Supply-Chain Inventory		
8	Wed	14-Apr	Case: Sport Obermeyer	Rocket Science Retailing	Case Write-up	
9	Fri	16-Apr	Lecture: Production Control	Growth in MRP, Control of JIT	1 Ex. Kanban, 1 Ex. Commonality	
10	Wed	21-Apr	Case: Hewlett-Packard			
11	Fri	23-Apr	Book: The Goal	The Goal	Book Review	
12	Mon	26-Apr	Lecture: Quality	Hank Kolb case	1 Ex. SPC, 1 Ex. 6 Sigma	
13	Wed	28-Apr	Case: Toyota			
14	Fri	30-Apr	Lecture: Process Design	Reengineering Work, ERP Tech. Note		
15	Mon	3-May	Case: Global Financial Corporation			
16	Wed	5-May	Lecture: Supply Chain Design	Chapter 8 Clockspeed		
17	Fri	7-May	Lecture: Product Design			
18	Mon	10-May	Case: Sega Dreamcast		Simulation Write-up	
19	Wed	12-May	Simulation & Course Wrap-up			

Organization

- Course uses Sloan's class server (15.760 BC H2)
- Course Materials:
 - Course Packet (Cases and Readings)
 - The Goal: A Process of Ongoing Improvement, E. Goldratt and J. Cox

Grading

 Class participation 	30%	1
 Book review 	10%	j individual
Case write-up	30%	in teams of 3
Simulation	30%	III teams of 3

Professional Standards