
Massachusetts Institute of Technology
Sloan School of Management

Applications of System Dynamics
15.875

Prof. Jim Hines

Spring 2004

Guidelines for fifth project week and group presentation: Partial model of first
hypothesis1

Purpose of fifth presentation: In your fifth week “on the job” you should begin
modeling by choosing a hypothesis (i.e. a loop or two) and making a start on a stock and
flow version as well as a start on the equations. In the breakout group presentation you
will explain how you chose which hypothesis to model first, you will outline your
strategy for converting this loop-hypothesis into a model and you will present a start on
that task. As always we hope you will also present any insights that emerged during the
week’s effort.

Modeling Hypotheses. Most experienced SDers think of modeling as completing a
series of “pieces” that will ultimately fit together. There are three ways of breaking a
model into pieces: By loops (hypotheses), decisions and by sectors.

In this class we take the loop approach for deciding what to model and then a decision
approach for deciding how to break the loop(s) up into separate views in Vensim. Loops
always have dynamics; hence, by taking a loop-centric approach to our modeling, we will
continually be adding to a model that has (potentially) interesting dynamics capable of
yielding insights.

A sectoral approach, in contrast, divides the model into logical “blocks” – such as
finance, marketing, customer, and production. It is possible and even likely that most
hypotheses cut through some or all of the sectors. The sectors themselves may have
loops, but they are often not the loops of most interest to the SDer and his client.
Consequently, with the sectoral approach, examination of hypotheses and truly
interesting dynamics must potentially await completion of the entire model when all
sectors are finally linked together. Getting benefit from simulation is delayed until very
late in the project. Further, SDers who finally “turn on” their model after six months or
more of modeling sectors are turning on a very complicated model; they are likely to be
bewildered by the resulting behavior. Finally, the objective of completing a loop
provides guidance concerning the appropriate amount of detail and level of aggregation;
without this guidance modelers tend to produce sectors that are needlessly detailed and
disaggregate, thereby complicating the task of gaining insight from the model. In
contrast, modelers who build their models hypothesis-by-hypothesis are continually

1 Prepared by Jim Hines 1998. Revised March, 1999; July, 1999, March 2000, April 2004.

 Page 1

simulating and understanding complete-loop dynamics and their models tend toward an
amount of detail that is appropriate to achieving insight and understanding... Hypothesis-
oriented modelers’ understanding grows along with their model.

Choosing which hypothesis to work on first. In order of decreasing importance the
hypothesis you choose to model first should be:

1. Easy to model
2. Central to the loop diagram
3. Interesting or important to you or your client

Easy is the most important consideration. As the model progresses decisions concerning
vocabulary, aggregation, detail, and basic architecture gradually get worked out. As
these questions become increasingly settled a modeler is in a position to tackle
increasingly difficult formulation issues. Further, as modeling progresses understanding
of the system also increases which again increases the ability of the modeler to model the
rest of the system. In brief, as modeling continues, further modeling becomes easier. To
take advantage of this process, you want deal with the most obvious formulations first
(when you need all the help you can get) and save the most difficult ones for last, when
you’ll be more prepared to tackle them.

Easy hypotheses are those that

• you (or your client) understand thoroughly already
• are comprised of molecules you already know
• are small

A consulting challenge may arise here. Clients often want to start with the part of the
model they understand the least. However, modeling what is poorly understood is almost
certainly going to be difficult (it takes a great deal of knowledge of the actual system to
create a good model). Fortunately, clients will usually listen to a modeler’s well-
reasoned opinion on what is really a question of modeling technique. In arguing for
“your” starting place over another, its best to list for the merits of the structure you want
to start with as opposed to listing the demerits of the client’s preferred starting place or
the shortcomings of his arguments. Still, for your own self confidence, it’s good to know
that the client’s reasons for wanting to model the unknown are not as sound as he
probably thinks. The reason most clients will focus on the piece of the organization they
know least is that they hope to strengthen their greatest vulnerability. However their
greatest vulnerability is not ignorance about a particular piece of the business but
ignorance about how the entire system behaves and why. So the route that results in the
fastest progress on modeling the greatest amount of the system is actually the fastest way
to shore up weakness. Starting with an area that is difficult will mean a slow start. And,
because difficulty tends to evaporate as modeling goes on, starting with something
difficult means wasting time and effort that could better be used at the end of the project
to refine analysis or policy solutions.

A central hypothesis (or loop) is one from which “hang” most of the other hypotheses
(loops). The advantage of beginning your model with a central hypothesis is that (a) the

 Page 2

work you do will be efficient in the sense that it will contribute to representing many
other hypotheses, (b) you will not need to first model other (pre-requisite) loops, and (c)
you will have many options for which hypothesis to model next. Further after finishing
that hypothesis you will be able to choose from a larger number of additional hypotheses
for your next modeling task. And this in turn, means that you can again choose a loop
that is easy (and central and interesting).

An interesting or important hypothesis is usually one, which you think will generate a
problematic behavior pattern. As mentioned above, some clients will focus on
hypotheses that they know the least about. However, ignorance is not what we mean by
“interesting”.

Example. For example say I had the following hypotheses about the problem with rising
product development times.

sales

customers

product
suggestions

product
complexity

time until next
generation

+

+

+

+

-

Product complexity loop

sales

customers

product
suggestions

product
complexity

time until next
generation

+

+

+

+

-

+

Complexity breeds suggestions

sales

customers

product
suggestions

product
complexity

time until next
generation

+

+

+

+

-
revenues

development
budget

hiring
programmersprogrammers

+

+

+

+

- +

Programmers as solution

 Page 3

sales

customers

product
suggestions

product
complexity

time until next
generation

+

+

+

+

-
revenues

development
budget

hiring
programmersprogrammers

+

+

+

+

-

average
programming

skill

-

productivity
and quality +

- +

Skill whammy loop

The product complexity hypothesis might seem like a good one to start with: The loop is
the most central one and it is interesting in that it probably will generate the major
concern – rising product development times. Unfortunately, it fails the most important
criteria: I am not sure how to model it.

The programmer as solution hypothesis is not so interesting because it will probably
generate falling product development times. On the other hand, this hypothesis is fairly
central and, most importantly, I have a good idea how to model it.

The other two hypotheses are out of the running: The skill whammy loop requires the
programmer-as-solution loop as a prerequisite, and the complexity breeds suggestions
loop is not central enough to focus on first. The best choice for me is the programmer as
solution hypothesis.

Strategy for converting a loop into a model. A good strategy is to start with what is
easiest and most tangible and work towards what is hardest and most abstract. So, first
identify any variables in the loop that obviously are levels – these will be levels that are
actually physical accumulations (e.g. inventories) as apposed to more abstract
accumulations (e.g. fatigue). Place those into Vensim. Then, hook up the physical levels
in the obvious ways (e.g. if raw materials flow into work in process, hook up the stock of
raw materials to the stock of work in process via a pipe) – that is, create any important
cascades (chains) of physical stocks.

Next, think in terms of decisions controlling the valves (flows) and model each decision,
beginning with the easiest and most tangible. Each decision can potentially go on a
separate view, although if decisions are simple enough you can put several on the same

 Page 4

view. To model a decision, start with molecules that you know. Then identify parts
whose formulation you have some sense for, even though you do not have a molecule in
mind. Finally, identify the "mysteries" – the parts that you have no idea how to model.

Note the recurring theme here: Start with what’s easy and move to what’s difficult. This
principle applies at the broadest level of organization (at the hypothesis level) and at the
smallest level (the decision level). Wherever you happen to be at the moment, try to find
something easy to do next.

To continue with the above example, an obvious level in the programmer-as-solution
loop is the stock of programmers. The development budget may be a stock, but if so it is
more abstract and so we’ll hold off for now.

Once you have spotted the obvious physical stocks, put it into the model:

Developers
Hiring and

Firing

Developers = INTEG(HiringAndFiring, initialDevelopers)
 Units: people
initialDevelopers = 100
 Units: people

Next, consider the flows. The only flow here is hiring and firing. How are you going to
model that? An obvious molecule is to use is the CloseGap molecule, which will yield:

timeToHire Desired
developers

Hiring and Firing = (Desired developers-Developers)/timeToHireAndFire

Units: people/year
timeToHireAndFire=1

Units: year

Note the above structure is the workforce molecule. If you’d been planning on using the
workforce molecule from the beginning, fine. If not, no problem – you’ve gotten to the

Developers

AndFire

Hiring and
Firing

 Page 5

same place by combining lower-level molecules. The fact that your work turns out to be
another molecule is an added bonus, perhaps giving you confidence that your structure
will work.

The obvious formulation to think about next is the one for desiredDevelopers. You may
be thinking in the back of you mind that timeToHireAndFire may not be constant, but
timeToHireAndFire is not part of any of your loops and a constant will certainly work
until you have taken care of more pressing formulations.

We know from the loop that the workforce is determined by how many people we can
afford, so the Workforce From Budget molecule would make sense here. Note, that we
could put this on a separate view, but things are still relatively simple, so we’ll keep
adding to the existing view.

Average

Desired developers = DevelopmentBudget/AverageDeveloperSalary

Units: people
AverageDeveloperSalary=50000

Units: $/(year*person)

What should we formulate next? Well, AverageDeveloperSalary is not a constant in the
real world, however its not part of any of our loops, so we’ll keep it a simple constant at
least until the time (if ever) when formulating a more complicated equation for
AverageDeveloperSalary becomes the next most pressing thing to model – which it
certainly is not now). On the other hand, Development budget is part of our loop and so
that where we will turn our attention next.

No molecule comes to mind for the development budget, perhaps, I can see an easy
formulation for it, given the fact that our loop says that as revenues go up, so does the
development budget. If not, I’d stop here in terms of preparation for the class, and would
talk to my client about it ASAP.

Developers
Hiring and

Firing

Desired

DeveloperSalaryDevelopment
Budget

timeToHire
AndFire developers

 Page 6

Development
Budget

RevenueFraction
ToDevelopment

Revenues

Price

Sales

DevelopmentBudget=Revenues*RevenueFractionToDevelopment
Units: $/year

RevenueFractionToDevelopment=0.4
Units: fraction

Revenues=Price*Sales
Units: $/year

Price=100
Units: $/box

The next ting to model is obviously sales (price is not part of my loop, so I’ll keep it a
constant). The model says that sales go up as time until next generation goes down.
Unfortunately, nothing comes readily to mind about how to model sales. I need to go
back to my client and chat a bit about how sales come about in the company. For now
I’ll stop, knowing that I would be in good shape to give a nice presentation on this, the
fifth handout.

The modeling process in brief. In brief the modeling process is always to work on the
easiest thing if possible. So starting at the top, find the easiest hypothesis. If a few
hypotheses tie for this honor, then choose the most central one. If we still have choice,
choose the most important.

When deciding which hypothesis will be easiest, you’ll want to think about whether or
not you have a sense for modeling each “piece” of the hypothesis. Often this will mean
identifying pieces for which a molecule comes to mind. It may be a good idea to actually
draw the hypotheses and make notations about where different molecules might go. If
we’d done this for the example above, we would have started with an even better picture
of the loop to model. Our loop to model would have had the following additional
annotations:

 Page 7

sales
- revenues

development
budget

hiring
programmers

programmers

+

+

+

+

-

Financial molecule

Budgeting molecule

Desired workers from
budget molecule

Workforce molecule

Guess: Something having
to with the estimated
completion date molecule.

Mystery!

time until next
generation

Having this diagram would have made our task even easier. I recommend that your team
actually annotate all of your hypotheses with molecules that come to mind and use this
information in choosing which loop to start with. If few or no molecules come to mind,
do NOT start flipping through the documentation searching, instead make a mental note
to study the molecules a bit more when you are not modeling.

At any rate, begin the actual modeling process by identifying physical stocks and putting
them into Vensim. Then concentrate on the rates of flow into and out of the molecule
and begin “backing up” along the causal chain(s) of the loop(s) in your hypothesis.

Use Molecules and Views. You may be concerned that molecules may not adequately
represent how your client company actually does things. This is a good concern, and as
soon as you can you will want to run the structure by your client. However, with very
little effort (and, hence, little at risk) you can start your model before talking to the client
as long as you are working from molecules or easy structures.

Each view should fit onto the computer screen without scrolling. Think of each view as
being organized around a particular decision: The first view above deals with deciding
how many people to hire and fire (the view also includes some decisions “up the chain”).
The second view deals with the budgeting decision.

On a more minor note: try not to split molecules across views. Other modelers will be
able to understand your model faster and better if they can “chunk” it into molecules.

An important note: The process of using molecules is NOT one of flipping through the
molecule documentation looking and looking for something you might be able to use.
Flipping through the documentation can bring on an acute case of “molecule-itis”.
Sufferers of this dread disease see a molecule that might conceivably, by some stretch of

 Page 8

the imagination, have something to do with the model at hand and so they hook it in. The
result is a meandering model consisting of near-aimless strings of molecules attached one
to the other. Just because a molecule can be hooked into a model doesn’t mean it should
be.

When modeling its best to rely on what is in your head and in your client’s head. What
comes easily to mind is usually appropriate. Further a molecule that comes to mind is
usually a molecule that is understood. Understanding is important, because often you
will need to modify (sometimes extensively) the chosen molecule. If you don’t know or
spot a molecule that is right on – no problem; you’ll just need to invent something.
System dynamics is all about creativity and invention.

If you get stuck, go to your client, not to the molecule documentation. The most common
reason for not being able to model something is simply not knowing how real people in
the system actually behave. Simply calling your client and saying “let’s talk a little bit
more about hiring” will usually get you unstuck.

A start on a model. Remember you don’t have to complete the model of your first loop
this week. Completing the model of your first loop will come next week. For now, just
model what you can, either making up the structure or using molecules.

Insights. As you model your loops, you will realize things about the loops that you
hadn’t realized before. Perhaps an important distinction will emerge, or you will realize
that a concept has a time constant attached to it that is remarkably short or long. As
always, record any insights and please share them with your breakout group.

 Page 9

Sample Slides

Slide 1

copyright ©1997,1998,1999 Jim Hines

Hypothesis to model
The Rate-Setters’ Error

Resolving
complaints

Incoming
complaints

Layoffs

Workforce

Profitability
Rates

Time until
resolved

Unresolved
complaints

Service
Quality

-
+

+

+

-

-

-

-
+

Service

1985 2005Now

Rates

Workforce

Slide 2

copyright ©1997,1998,1999 Jim Hines

We chose the rate-setters’ error
as our first hypothesis to model

because ...
• It’s the most important reason we know that

the current system may fail
• All the other loops hook into or “go

through” this one. That is, rate-setters’
error is central.

• We thought we could model it (we could
see a number of molecules)

Slide 3

copyright ©1997,1998,1999 Jim Hines

Centrality of rate-setters’ error

//

Resolving
complaints

Incoming
complaints

Telephone
lines

morale

Layoffs
Pressure to

increase PDY

Productivity

Workforce

Profitability
Rates

Time until
resolved

Unresolved
complaints

Service
Quality

 Page 10

Slide 4

copyright ©1997,1998,1999 Jim Hines

Molecules

Resolving
complaints

Incoming
complaints

Layoffs

Workforce

Profitability
Rates

Time until
resolved

Unresolved
complaints

Service
Quality

-
+

+

-

-

-

-
+

Slide 5

copyright ©1997,1998,1999 Jim Hines

Revenue per line (from Smooth
Pricing molecule)

Time until
resolved

Relative
ResolutionTime

Line revenue

Price
Change

IndicatedLineRevenue

Time to change
price

Initial Price

desired
ResolutionTime

EffectOf
PerformanceOn

LineRevenue

EffectOf
PerformanceOn
LineRevenue f

max
lineRevenue

Unresolved
complaints

Resolving
complaints

Incoming
complaints

Slide 6

copyright ©1997,1998,1999 Jim Hines

Workforce (from Workforce and
Budgeting molecules)

Revenue

Workforce

<Line
revenue>

Lines

Workforce
Budget

Worker
salary

fraction ofrevenues toworkforce

Indicated
Workforce

Hire/fire rate

time to hire
or fire

companyworkforcetarget
forcedreductionfactor

 Page 11

