

Life cycles and transitions Michael A M Davies

There are distinct stages in the battle for technological dominance

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Fernando Suarez, "Battles for technological dominance: an integrative framework", Research Policy, Volume 33, 2004, pages 271-286

These phenomena often result in characteristic {product | industry} 'life-cycle' (YMMV)

	Early	Dominant	Incremental	Maturity	Eclipse
	ferment	design	innovation		or
Demand Opportunity	Lead users, early adopters - high payoff, low switching costs	emerges Early mainstream - usability, cost more important	Mainstream customers - soft factors, aesthetics	Saturation, segmentation, customization	renewal Find new needs or new customers
Business Ecosystem	Many entrants - diverse business models	Decisive battles for leadership	Intensifying competition, early consolidation	Fierce competition, consolidation around majors and minors	
Technological Infrastructure	Make it work - innovate on performance , diverse integrative designs	Select optimal architecture, drive down costs, focus on ease of use	Provide broader offer, rationalize portfolio , build complementary <i>asset</i> s	broad portfolio , build	Search for new options

Dominant design

- After significant technological innovation and subsequent era of ferment, form factor and architecture that becomes accepted market standard
- Dominant designs may not be better than alternatives, nor innovative
- They have benchmark features to which subsequent designs are compared

Image by MIT OpenCourseWare.

New dominant designs?

Image by Dan_H on Flickr [http://www.flickr.com/photos/dan_h/667441709]

Or is it the Palm Pre?

- Ed Colligan: "We've learned and struggled for a few years here figuring out how to make a decent phone. PC guys are not going to just figure this out. They're not going to just walk in." (2006)
- Roger McNamee: "You know the beautiful thing: June 29, 2009, is the two- year anniversary of the first shipment of the iPhone. Not one of those people will still be using an iPhone a month later."

(5 Mastachus 2003) New of Technology

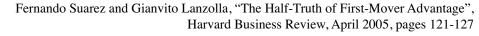
Some clarifications from Palm itself, on performance...

Pleas read some of Palm's recitation available at:

http://www.osnews.com/story/21113/palm_Whips_Mcnamee_Retracts_investor_s_statements

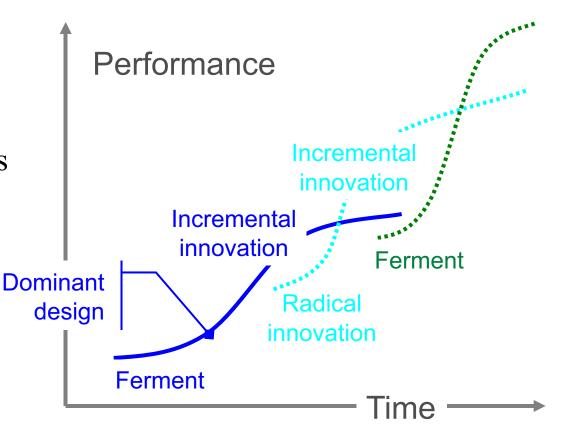
The relative speed with which technology and demand co-evolve results in different scenarios

Image removed due to copyright restrictions.


Fernando Suarez and Gianvito Lanzolla, "The Half-Truth of First-Mover Advantage", Harvard Business Review, April 2005, pages 121-127

...and determines how likely a business is to be able to achieve first-mover advantage

Image removed due to copyright restrictions.



Technological innovation and the diffusion of innovations cause transitions

- Incremental
 innovation
 involves
 relatively
 minor changes
- Radical
 innovation is
 based on
 different
 engineering
 and scientific
 principles

Incremental and radical innovations have very different competitive consequences

Incremental innovation

- Introduces relatively minor changes
- Happens once dominant design has been established
- Typically drives rapid performance improvement
- Exploits the potential of the established design
- Typically reinforces position of incumbents

Radical innovation

- Based on a different set of engineering principles
- May open up whole new markets and potential applications
- Often creates great difficulties for incumbent firms
- Can be basis for successful entry by insurgents

Explanations for why transitions are so challenging have been driven by observing anomalies

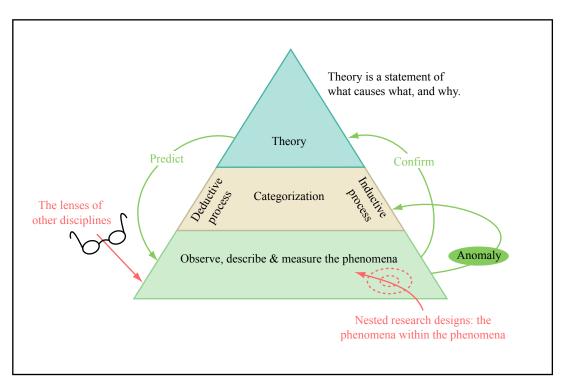


Image by MIT OpenCourseWare.

Clayton Christensen and Michael Raynor, "Why Hard-Nosed Executives Should Care About Management Theory", Harvard Business Review, September 2003, pages 66-74

For example, sometimes, "...apparently modest changes..." have dramatic consequences

Xerox and Canon in small copiers

- Pioneers plain paper copiers
- In 1970's competitors win share with much smaller, more reliable copiers
- Little new scientific or engineering knowledge
- But Xerox takes ~8 years to launch competitive product
- ...and it loses 50% of its market share

Sony and RCA in portable radios

- Mid-1950's RCA develops prototype portable radio
- Sony- small new insurgent uses transistorized radio to enter US market
- Sony's radios produced with technology licensed from RCA
- But RCA doomed as a follower, can't match Sony

Rebecca Henderson and Kim Clark, "Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms", Administrative Science Quarterly, March 1990, pages 9-30

Two different sorts of knowledge: component or modular; architectural or integrative

Component

- Knowledge about each of the core design concepts
- How they are implemented in a particular component within a product
- Specialized and focused, can be mastered by an individual or a small team
- Constant focus once dominant design established

Architectural

- Knowledge about ways in which components link together into coherent whole and are interdependent
- Tends to become embedded as tacit knowledge
- Communication channels, information filters and problem-solving strategies
- Shift may not be apparent

Redical change obvious Rebecca Henderson and Kiew Clark, Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms", Administrative Science Quarterly, March 1990, pages 9-30

A framework for thinking about different types of innovation and the resulting transitions

Changed

Linkages and interdependencies amongst core concepts and components

Unchanged

Architectural Innovation

Innovation

Radical

Incremental Innovation

Modular Innovation

Reinforced

Overturned

Rebecca Henderson and Kim Clark, "Architectural Innovation: The Reconfiguration of **Existing Product** Technologies and the Failure of Established Firms". Administrative Science Quarterly, March 1990, pages

9-30

Core concepts

Michael A M Davies

Architectural innovation and the consequences of transitions in semiconductor capital equipment

	<u>Generation</u>						
	1 st	2 nd	3 rd	4 th	5 th		
<u>Firm</u>	Contact	Proximity	Scanner	Step and Repeat (1)	Step and Repeat (2)		
Nikon					70		
GCA				55	12		
Perkin -Elmer		1	78	10	<1		
Canon		67	21	9			
Kasper	17	8					
Cobilt	44						

Rebecca Henderson and Kim Clark, "Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms", Administrative Science Quarterly, March 1990, pages 9-30

Difficult transitions also happen when technological innovation outstrips the demand opportunity

Image removed due to copyright restrictions.

Clayton Christensen, Michael Raynor and Matt Verlinden "Skate to Where the Money Will Be", Harvard Business Review, November 2001, pages 72-81

(Potentially) disruptive technologies must have two key characteristics

 Products and services that embody these technologies in their early stages have attributes that make them unattractive to incumbents' current mainstream customers, and typically appeal only to small and emerging markets or segments, and offer inferior returns

 These technologies have the potential for rapid innovation along trajectories that will in future enable products or services that will then become attractive to incumbents' mainstream customers, allowing insurgents to later invade established markets and displace the incumbent

Three things all then need to happen for these technologies to threaten incumbents

Initial insurgent Innovation investment trajectory

- Even though products that embody these technologies are unattractive to incumbents' current mainstream customers at the outset, insurgents perceive sufficient demand opportunity to fuel investment and innovation
- The innovation trajectory for these technologies evolves in the right direction and fast enough to meet the evolving requirements of the incumbents' current mainstream customers

Incumbent indifference

The demand

opportunity
represented by
incumbents'
current mainstream
customers is
evolving along a
different trajectory
than can best
continue to be met
using incumbents'
sustaining
technologies

Disruptive innovations in disk drives

- An alternative explanation for failure
 - could have mastered the architectural transition
 - but novel technologies did not meet needs of current <u>customers</u>
- Response to transition depends on both technical innovation and on the perceived demand opportunity, business model and capabilities

Joseph Bower and Clayton Christensen "Disruptive Technologies: Catching the Wave", Harvard Business Review, January-February 1995, pages 43-53

Each of these generations involved significant shifts in the *direction* of the innovation trajectory

	<u>Generation</u>						
	1st	2 nd	3 rd	4 th	5 th		
	14"	8"	5.25"	3.5"	2.5"		
Demand opportunity	Mainframe	Mini- computers	Desktop computers	Portable computers	iPods		
Leader(s)	CDC	Shugart	Seagate	Conner Quantum			
New attributes		Internal power supplies Smaller	Higher density Lower unit cost	Rugged Lightweight Low-power	Tiny		

Clayton Christensen, "Exploring the Limits of the Technology S-Curve - Part I: Architectural Technologies",
Production and Operations Management, Fall 1992, pages 358-366

Although disruptive technologies require special conditions, they can be extremely powerful

- Disk drives
- Mainframes, mini-computers and personal computers
- Digital cellular, versus analog cellular
 - worse coverage and voice quality
 - larger and more costly cellphones
- IP and packet switching, versus TDM and ATM
 - difficult to manage
 - no QoS

Even when incumbents anticipate disruption and respond, cognitive limitations may doom them

- Polaroid was the leader in instant photography
 - 23% pa sales, 17% profit growth late '40s to late '70s
- A technology-driven company
 - belief that long-term, large-scale research enables great products, great products create their own market
 - endogeneous demand, little need for or value in conventional market research
- Believed in consumables
 - "What's the business model? It's the razor/blade ... so we make money with the film"
 - "... in the photographic business, all the money is in the software [film], none of it is in the hardware..."

Mary Tripsas and Giovannit Gavetti "Capabilities, Cognition and Inertia: Evidence from Digital Imaging", Strategic Management Journal, 2000, pages 1147-1161

Polaroid is initially successful at developing technologies, but fails at product development

- '81 digital imaging group
- '86 microelectronics lab
- "..orientation was
 'technical challenge' –
 we can do it."
- By 1989 >40% of R&D spend on digital imaging
- Major technological breakthroughs
- By '96, 66% of R&D
- '93 sells microelectronics lab to MIT

- BUT few successful new products
 - Helios
 - Printer in the Field
 - PDC-2000 not 'til '96
- As of 1997, >90% of revenue from established products
- Digital imaging has lost \$120-130 million

Response to transition – whether your survive or thrive – ultimately depends on four key factors

<u>Demand opportunity</u> - who your customers are and what they want

Business model and
business ecosystem your chosen niche and target
customers, its business model
and hence how you make
money

<u>Technological infrastructure</u>
<u>and innovation</u> –
explicit and tacit component
and architectural knowledge

Your mental models
 beliefs about the future, about how to make money, reflected in your communication channels, information filters and search and problem-solving strategies

MIT OpenCourseWare http://ocw.mit.edu

15.965 Technology Strategy for System Design and Management Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.