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Guided Study Program in System Dynamics 
System Dynamics in Education Project


System Dynamics Group

MIT Sloan School of Management1


Solutions to Assignment #27 
Monday, July 5, 1999 

Reading Assignment: 

Please refer to Road Maps 9: A Guide to Learning System Dynamics (D-4508-1) and 
read the following papers from Road Maps 9: 

•	 Generic Structures: Overshoot and Collapse, by Lucia Breierova (D-4480) 
•	 A Skeptic’s Guide to Computer Models, by John Sterman (D-4101-1) 

1.	 Generic Structures: Overshoot and Collapse 

A. Describe one or more systems that you think exhibit or may exhibit overshoot and 
collapse. 
•	 What would be the variables in the system corresponding to the “stock” and 

“resource” of the generic structure? 
•	 How does the “stock” deplete the “resource,” and why is the “loss fraction” of the 

“stock” dependent on the amount of “resource”? 
•	 Is the “resource” renewable?  If so, how does the renewal of the “resource” affect 

the system? 
•	 Over what time horizon does the behavior of overshoot and collapse occur? 
•	 Once the “stock” collapses, has all the “resource” been depleted?  Why or why not? 

If you have extra time, feel free to model the system that you described and submit your 
model. 

Although fisheries can be stable or cyclical, newly developing fisheries often exhibit the 
overshoot and collapse behavior. This is particularly true if the product is a particularly 
valuable one that attracts rapid investment. Often the collapse is followed by a long 
period of recovery after which another overshoot and collapse may occur thus producing 
cycle-like behavior. This produces a behavior similar to that of the deer population 
model. 

1 Copyright © 1999 by the Massachusetts Institute of Technology. Permission granted to distribute for 
non-commercial educational purposes. 
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In this case, the “stock” would be the participants in the fishery, which could be 
expressed as number of boats. The “resource” would be the fish population. 
The stock will deplete the resource because the consumption is greater than the growth 
rate of the resource. This consumption rate may remain high (given a high value product) 
even when the resource amount drops to fairly low values. 
In this case, the resource is renewable if given a chance to recover. The overshoot and 
collapse phenomenon occurs under conditions where the stock’s consumption of the 
resource is greater than the resource’s growth. If the stock drops sufficiently (following 
the resource collapse) then the resource can recover, and another “cycle” could occur. 
I would expect the time horizon for this type of behavior would be 5 to 15 years. 
Normally the collapse would occur prior to the disappearance of all the resource. Often a 
sufficient amount of “stock” (boats) remain to prevent the resource (fish population) from 
recovering. Although fishing usually does not remove the very last fish, it may be 
possible for fishing to reduce a population to levels where it might become extinct for 
other reasons such as pollution, habitat destruction, other changes in the ecosystem. 

Every once in a while a “management fad” becomes immensely popular in a very short 
time period. Examples of these management fads are Total Quality Management, 
Business Process Redesign, Organizational Learning, Activity Based Costing, ISO 
quality certification, the Balanced Business Scorecard, MRP, JIT, the Value Chain 
concept, etc. Each of these techniques is meant to improve business performance. 

-The first firms starting up an improvement program may, under guidance of founders of 
the same technique, accomplish substantial improvements (and, of course, these results 
are often published in roaring stories in leading management literature). The effect is that 
more and more companies want to start up their own version of the improvement 
program prevailing at that moment. Consulting firms will increasingly offer their 
“expertise” in the program, and more improvement programs will be initiated. So 
demand for expertise is high, causing even more consulting firms to offer services in 
order to get their piece of the pie. 

One may start to suspect that the experience offered by the consulting firms is not as solid 
as may seem. After all, in a new, emerging field, where did the experience come from? 
Thus, the average quality of the expertise being offered and the average quality of new 
programs being initiated decreases. So a depletion of the resource of potential client 
companies for the consultants occurs through two outflows: companies that already 
started their program and companies that become less eager to start up an improvement 
program because of the decreasing quality and success rate of such programs are both 
depleted from the resource. After some time, the number of firms willing to invest in 
expensive reorganization programs is dramatically lowered, causing consulting firms to 
withdraw from the field of the improvement program. 

The number of consulting firms performing activities in the specific field is the stock in 
the system, the number of companies willing to start up an improvement program is the 
resource. 
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More consulting firms offering their services resulting in actual improvement programs 
with clients will deplete the resource of potential clients. When the number of potential 
clients decreases, consultants will pull out from the field and direct their attention to other 
emerging management fads. The lower the resource of potential clients becomes, the 
greater the loss fraction. 

The resource is not renewable (at least for that specific improvement program). Other 
new rewarding improvement programs, however, fill a new resource of potential clients. 

The time horizon for the overshoot and collapse behavior is between two and five years I 
guess. 

The stock will probably not collapse completely. Some of these improvement techniques 
are very valuable, especially when used by the real experts. So I expect that the real 
experts will become niche players in the consulting market and will continue doing 
wonderful projects with their clients. 

B. Turn back to section 4, “Table Functions in the Generic Structure.”  It is possible to 
generate the unrealistic behaviors of S-shaped growth or even exponential growth by 
simply altering one of the table functions. Which one of the table functions should be 
changed? How would you change the table function so that the model produces S-shaped 
growth, what assumptions would this change in the table function represent, and why are 
these assumptions unrealistic? What about for exponential growth? 
Hint: You may want to refer to Road Maps 9: Mistakes and Misunderstandings: Table 
Functions. 

The table function that should be altered in order to obtain the unrealistic behavior of S-
shaped growth or exponential growth is the “effect of resource on loss fraction.”  This 
table function controls the maximum value that the “loss fraction” can reach when the 
“Resource” has been depleted. Initially, the “loss fraction” is lower than the 
“COMPOUNDING FRACTION,” so the “Stock” increases exponentially. As the 
“Resource” is depleted, however, the “effect of resource on loss fraction” becomes 
greater, and the “loss fraction” increases.  In the overshoot and collapse behavior, the 
“outflow” becomes greater than the “inflow” when the “Resource” is sufficiently 
depleted. When the “Resource” is sufficiently depleted, the “loss fraction” must reach 
values greater than the “COMPOUNDING FRACTION.”  In the generic structure the 
table function “effect of resource on loss fraction” is formulated so that the “loss 
fraction” does indeed reach values greater than the “COMPOUNDING FRACTION.” 

If the range of values of this table function is altered so that its maximum value still 
makes the “loss fraction” lower than the “COMPOUNDING FRACTION,” the initial 
exponential growth cannot be stopped. The difference between the “COMPOUNDING 
FRACTION” and the “loss fraction” is always positive.  The net flow into the “Stock” is 
then also positive and increasing, generating the exponential growth of the “Stock.”  For 
example, suppose that the “COMPOUNDING FRACTION” is equal to 0.3 and the 
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“NORMAL LOSS FRACTION” is equal to 0.1.  Then, setting the maximum value of the 
“effect of resource on loss fraction” to a value of 2 will result in a maximum possible 
value of “loss fraction” of 0.1 * 2 = 0.2, which is still lower than the “COMPOUNDING 
FRACTION.”  The growth fraction for the net flow into the “Stock” is then 0.3 – 0.2 = 
0.1. The result will be an exponential behavior with a growth fraction of 0.1. 

S-shaped growth would be obtained if the range of values of the table function is altered 
so that when the “effect of resource on loss fraction” reaches its maximum value, the 
“loss fraction” equals the “COMPOUNDING FRACTION.”  With such a table function, 
as the “Resource” is depleted, the difference between the “COMPOUNDING 
FRACTION” and the “loss fraction” keeps decreasing but remains positive until it 
reaches zero. The net flow into the “Stock” is always positive, initially increasing and 
later decreasing, until it reaches zero. Such a behavior of the net flow typically generates 
S-shaped growth. As in the example above, suppose that the “COMPOUNDING 
FRACTION” is equal to 0.3 and the “NORMAL LOSS FRACTION” is equal to 0.1. 
Then, setting the maximum value of “effect of resource on loss fraction” to 3 will result 
in a maximum possible value of the “loss fraction” of 0.1 * 3 = 0.3.  The “loss fraction” 
then equals the “compounding fraction,” and the net growth fraction and hence the net 
flow is 0. Because zero is the minimum value of the net growth fraction, the “Stock” 
shows a typical S-shaped growth before reaching some maximum value and remaining at 
that value. 

Both exponential growth and S-shaped growth are unrealistic behaviors because they 
would imply that the “Resource” may by depleted without affecting the maintenance and 
growth of the “Stock.”  Because the “Stock” keeps increasing (in the case of exponential 
growth) or remains at some maximum value (in the case of S-shaped growth), the 
“Stock” consumes the “Resource,” so the “Resource” is depleted until it reaches a value 
close to zero. The relationship between the “Stock” and the “Resource” has been defined 
in such a way, however, that the “Resource” is absolutely necessary to allow the growth 
and even the maintenance of the “Stock.”  Therefore, a high value of the “Stock” is not 
possible in the presence of a low or zero value of the “Resource.”  A model exhibiting 
exponential or S-shaped growth would not represent real-life cases where the stock 
strictly depends on a certain resource. 

2. Independent Exercise: Sensitivity analysis of table functions 

In this exercise, you are going to explore the sensitivity of model behavior to changes in 
table functions. Before you tackle the exercises, please read the following introduction to 
the topic, taken from a paper in progress. 

Table functions, also known as graphical functions, are useful tools for representing 
nonlinear relationships between variables in a model. The reasons for performing 
sensitivity analysis on table functions are similar to the reasons for testing the effects of 
changes in constant parameters. Table functions often express a modeler’s crucial 
assumptions about the relationship between two variables. A modeler should, therefore, 
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simulate the model with alternative formulations of table functions to see how the model 
behavior changes under different assumptions. If sensitivity analysis shows that the 
model behavior is relatively insensitive to changes in the shape of a table function, then 
the modeler would not have to specify the table function with extreme precision in order 
to generate the observed behavior. Thus, the modeler can be more certain about the 
model’s behavior, since the behavior remains the same even if the table function changes 
slightly. Sensitivity analysis also allows a modeler to better understand the dynamics of 
the system being modeled and to investigate the behavior under extreme assumptions. 

Before exploring in detail how changes in table functions affect the behavior of a 
model, it is necessary to understand what table functions are and how they should be 
formulated. 

A table function is a graphical tool used to model a causal, usually nonlinear 
relationship between two variables in a model. Table functions model relationships that 
would be difficult to specify in mathematical terms. For example, a time series (a 
function in which a variable’s value changes with respect to time) can be incorporated 
into a model as a table function; however, exogenous time series should seldom be used 
in a system dynamics model.  More frequently, a table function represents an effect of one 
variable on another variable. In such cases, the function is referred to as a multiplier 
because it multiplies a normal, or reference value of a variable. A normal value, defined 
by the modeler, represents the normal, or reference conditions of the system, in which the 
variable being multiplied by the multiplier is equal to its normal value. 

If a table function is a multiplier, the input (the independent variable on the 
horizontal, or x-axis) as well as the output (the dependent variable on the vertical, or y-
axis) of the table function must be dimensionless because a table function cannot change 
the units of one variable to the units of another variable. In addition, the table function 
should be robust; both the input and the output should be allowed to vary over their 
entire possible ranges. 

When formulating a table function, several important characteristics of the function 
should be determined: slope, shape, reference points, and reference lines. 

The slope of a table function represents the direction of the relationship between the 
variables. When the relationship is positive, so is the slope; an increase in the value of 
the independent variable causes an increase in the value of the dependent variable. A 
negative slope means that the relationship is negative; an increase in the value of the 
independent variable causes a decrease in the value of the dependent variable. 

The shape, or curvature, of a table function shows the strengthening or weakening 
effect of the independent variable on the dependent variable. When the curve of the table 
function becomes steeper, the effect of the independent variable on the dependent 
variable is stronger. A weakening effect of the independent variable on the dependent 
variable is indicated by a flattening of the curve. 

If the table function is a multiplier, it multiplies the normal value of a variable. In a 
multiplier, a reference point is a point for which the multiplier outputs the value of 1, so 
that the dependent variable is equal to its normal value. A value of 1 for the multiplier 
means that the independent variable has no effect on the dependent variable, which 
occurs under the normal conditions of the system. 
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A reference line, for example y = x (the dependent variable equals the independent 
variable), can help to identify reference conditions of the system as well as weakening 
and strengthening effects of the table function. 

In addition, it is often helpful to determine the coordinates of the extreme values of 
the independent and dependent variables shown in the table, as well as the coordinates of 
the points where the independent variable is equal to 0 and to 1, and where the 
dependent variable is equal to 0 and to 1. 

Now please work on the following problems: 

A. Choose one of the four models presented in Generic Structures: Overshoot and 
Collapse. Build the model in Vensim PLE and simulate the base run, as presented in the 
paper. In your assignment solutions document, please include the model diagram, 
documented equations, and graphs of model behavior in the base run. 

We will be working with the deer population model. 

Model diagram: 

Deer 

Vegetation 

births deaths 

growthconsumption 

BIRTH FRACTION NORMAL DEATH 
FRACTION 

GROWTH PER UNIT 
OF VEGETATION 

NORMAL AMOUNT 
OF VEGETATION 

NORMAL CONSUMPTION 

consumption per deer 
effect of vegetation on
consumption per deer 

effect of vegetation
on death fraction 

death fraction lookup 

death fraction 

PER DEER consumption lookup 

Model equations: 

BIRTH FRACTION = 0.5 
Units: 1/Year 
Number of deer born per deer every year. 
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births = Deer * BIRTH FRACTION 
Units: deer/Year 
Number of deer born every year. 

consumption = Deer * consumption per deer 
Units: unit of vegetation/Year 
Rate of consumption of vegetation. 

consumption lookup ([(0,0) - (1,1)], (0,0), (0.1,0.305), (0.2,0.545), (0.3,0.72), (0.4,0.835), 
(0.5,0.905), (0.6,0.945), (0.7,0.97), (0.8,0.985), (0.9,1), (1,1)) 
Units: dmnl 
The table function specifying the effect of vegetation on consumption per deer. 

consumption per deer = NORMAL CONSUMPTION PER DEER * effect of vegetation 
on consumption per deer 
Units: (unit of vegetation/deer)/Year 
Amount of vegetation consumed per deer per year. 

death fraction = NORMAL DEATH FRACTION * effect of vegetation on death fraction 
Units: 1/Year 
Fraction of deer dying each year. 

death fraction lookup ([(0,0) - (1,10)], (0,10), (0.1,7.15), (0.2,5.05), (0.3,3.15), (0.4,2.15), 
(0.5,1.6), (0.6,1.35), (0.7,1.15), (0.8,1.05), (0.9,1), (1,1)) 
Units: dmnl 
The table function specifying the effect of vegetation on the deer death fraction. 

deaths = Deer * death fraction 
Units: deer/Year 
Number of deer dying every year. 

Deer = INTEG (births-deaths, 100) 
Units: deer 
The population of deer. 

effect of vegetation on consumption per deer = consumption lookup (Vegetation / 
NORMAL AMOUNT OF VEGETATION) 
Units: dmnl 
Effect of the availability of vegetation on consumption per deer. 

effect of vegetation on death fraction = death fraction lookup (Vegetation / NORMAL 
AMOUNT OF VEGETATION) 
Units: dmnl 
Effect of the availability of vegetation on the deer death fraction. 
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growth = Vegetation * GROWTH PER UNIT OF VEGETATION 
Units: unit of vegetation/Year 
Rate of regeneration of the vegetation. 

GROWTH PER UNIT OF VEGETATION = 0.1 
Units: 1/Year 
Units of vegetation regenerated per unit of vegetation every year. 

NORMAL AMOUNT OF VEGETATION = 10000 
Units: unit of vegetation 
The normal amount of vegetation in the area. 

NORMAL CONSUMPTION PER DEER = 1 
Units: unit of vegetation/(Year * deer) 
Number of units of vegetation that a deer consumes per year if there is enough 
vegetation available. 

NORMAL DEATH FRACTION = 0.1 
Units: 1/Year 
Fraction of deer dying per deer every year when there is enough vegetation 
available. 

Vegetation = INTEG (growth-consumption, 10000) 
Units: unit of vegetation 
Amount of vegetation present in the area. 

deer	 deer 

death fraction lookup	 consumption lookup 

0	 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 
-X- -X-

Base run behavior: 

10 

7.5 

5 

2.5 

0 

1 

0.75 

0.5 

0.25 

0 
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Deer and Vegetation


10,000 deer 
20,000 unit of vegetation 

5,000 deer 
10,000 unit of vegetation 

0 deer 
0 unit of vegetation 

0  5  10
Years 

15  20 

Deer : deer 
Vegetation : deer 

deer 
unit of vegetation 

B. Conduct parameter sensitivity analysis on the model you chose in part A. In your 
assignment solutions document, include graphs to show the results, and summarize your 
findings. 

Let’s start by changing the value of “BIRTH FRACTION.”  With a lower value of 
“BIRTH FRACTION,” the initial exponential growth of “Deer” is slower, so 
“Vegetation” can increase to a higher value.  Eventually, however, the “Deer” population 
becomes so large that even the greater amount of “Vegetation” is not sufficient to support 
all the “Deer,” and the population collapses and “Vegetation” is depleted.  With a higher 
value of “BIRTH FRACTION,” on the other hand, the exponential growth of “Deer” is 
faster, hindering the growth of “Vegetation” through increased “consumption.”  The 
amount of “Vegetation” does not rise enough to support the high population of “Deer,” 
and the overshoot and collapse behavior is again generated. The following figures 
compare the base run behavior (deer simulation run) of “Deer” and “Vegetation” to a 
simulation with “BIRTH FRACTION” equal to 0.3 (low birth fraction simulation run) 
and to a simulation with “BIRTH FRACTION” equal to 0.7 per year (high birth fraction 
simulation run): 
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Deer - changing birth fraction


12,000 

9,000 

6,000 

3,000 

0 
0  10  20  30  40 

Years 

Deer : deer deer 
Deer : low birth fraction deer 
Deer : high birth fraction deer 

Vegetation - changing birth fraction 
32,000 

24,000 

16,000 

8,000 

0 
0  10  20

Years 
30  40 

Vegetation : deer 
Vegetation : low birth fraction 
Vegetation : high birth fraction 

unit of vegetation 
unit of vegetation 
unit of vegetation 
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Because the system behavior is mainly affected by the relative values of “BIRTH 
FRACTION” and “NORMAL DEATH FRACTION,” one would expect that decreasing 
the “NORMAL DEATH FRACTION” would have similar effects on model behavior as 
increasing the “BIRTH FRACTION.”  Similarly, increasing the “NORMAL DEATH 
FRACTION” should have similar effects as decreasing the “BIRTH FRACTION.” 

Let’s now study changes in the “NORMAL CONSUMPTION PER DEER.”  When 
“NORMAL CONSUMPTION PER DEER” is lower, the depletion of “Vegetation” by 
the “Deer” is slower, so the amount of “Vegetation” and hence the “Deer” population can 
rise to higher values. The higher “Deer” population, however, increases the total amount 
of “consumption,” so “Vegetation” eventually starts decreasing, causing the collapse of 
“Deer.” With a higher value of “NORMAL CONSUMPTION PER DEER,” on the other 
hand, the depletion of “Vegetation” is faster.  Therefore, “Vegetation” and “Deer” cannot 
grow to as high values as in the base case before the “Vegetation” is greatly depleted, 
followed by the collapse of “Deer.”  The following figures compare the base run behavior 
(deer simulation run) to a simulation with “NORMAL CONSUMPTION PER DEER” 
equal to 0.5 (low consumption simulation run) and to a simulation with “NORMAL 
CONSUMPTION PER DEER” equal to 2 units of vegetation per deer per year (high 
consumption simulation run): 

Deer - changing normal consumption per deer 
24,000 

18,000 

12,000 

6,000 

0 
0  5  10

Years 
15  20 

Deer : deer 
Deer : low consumption 
Deer : high consumption 

deer 
deer 
deer 
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Vegetation - changing normal consumption per deer

20,000 

15,000 

10,000 

5,000 

0 
0  5  10

Years 
15  20 

Vegetation : deer 
Vegetation : low consumption 
Vegetation : high consumption 

unit of vegetation 
unit of vegetation 
unit of vegetation 

Finally, let’s study the changes in behavior resulting from changing the “NORMAL 
GROWTH PER UNIT OF VEGETATION” to see how the rate of regeneration of a 
renewable resource affects the behavior of overshoot and collapse. When the 
“NORMAL GROWTH PER UNIT OF VEGETATION” is low, the “growth” of 
“Vegetation” is slower, so “consumption” exceeds “growth” earlier, leading to an earlier 
decline of “Vegetation.”  As a result, the “Deer” population is not able to grow to very 
high values and collapses earlier. When the “NORMAL GROWTH PER UNIT OF 
VEGETATION” is high, on the other hand, the “growth” of “Vegetation” is faster, and it 
takes longer for “consumption” to exceed “growth.”  Therefore, “Vegetation” grows for a 
longer time and to a higher value, allowing the population of “Deer” to also grow to a 
high value before collapsing. If the “NORMAL GROWTH PER UNIT OF 
VEGETATION” is set high enough, the model will generate exponential growth of both 
the “Deer” population and the amount of “Vegetation.”  Such a situation is unrealistic, 
however, because of biological facts about plants, and because other land area pressures 
would control the growth of “Vegetation.”  The following figures compare the base run 
behavior (deer simulation run) to a simulation with “NORMAL GROWTH PER UNIT 
OF VEGETATION” equal to 0.05 (low growth simulation run) and to a simulation with 
“NORMAL GROWTH PER UNIT OF VEGETATION” equal to 0.2 per year (high 
growth simulation run): 
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Deer - changing normal growth per unit of vegetation


48,000 

36,000 

24,000 

12,000 

0 
0  5  10

Years 
15  20 

Deer : deer 
Deer : low growth 
Deer : high growth 

deer 
deer 
deer 

Vegetation - changing normal growth per unit of vegetation


60,000 

45,000 

30,000 

15,000 

0 
0  5  10

Years 
15  20 

Vegetation : deer 
Vegetation : low growth 
Vegetation : high growth 

unit of vegetation 
unit of vegetation 
unit of vegetation 
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C. In the model, identify the table function corresponding to the “effect of resource on 
consumption per unit of stock” table function from the generic structure.  Characterize 
the slope, shape, reference point(s) and any other interesting characteristics of the 
function, and explain the modeler’s assumptions in formulating the table function. 
Describe any alternative assumptions that one might have about the relationship between 
the amount of resource and the consumption per unit of stock, and specify table functions 
corresponding each of those assumptions. For each specification of the table function, 
simulate the model, and submit a graph of the table function and a graph of the model 
behavior. Explain how and why the particular table function specification resulted in 
any observed changes in the behavior of the model. 

The table function corresponding to the “effect of resource on consumption per unit of 
stock” is the “effect of vegetation on consumption per deer”: 

deer 
consumption lookup 

-X-

The slope of the table function is positive for all values of the ratio of “Vegetation” to 
“NORMAL AMOUNT OF VEGETATION,” indicating that the higher the amount of 
“Vegetation,” the higher the “consumption per deer.” 

The curve becomes increasingly flat as the value of “Vegetation” increases, which 
indicates that the effect of “Vegetation” on “consumption per deer” weakens for 
increasing amounts of “Vegetation.”  The modeler assumes that when the amount of 
“Vegetation” is close to the “NORMAL AMOUNT OF VEGETATION,” the ability of 
deer to find and consume “Vegetation” is not greatly affected, so their consumption is 
close to the “NORMAL CONSUMPTION PER DEER.”  If “Vegetation” is very scarce, 
however, the ability of deer to find and consume “Vegetation” diminishes quickly. 

A reference of the table function is the point (1,1), indicating that when “Vegetation” 
equals the “NORMAL AMOUNT OF VEGETATION,” “consumption per deer” also 
equals the “NORMAL CONSUMPTION PER DEER.”  Also, if “Vegetation” exceeds 
the “NORMAL AMOUNT OF VEGETATION,” the modeler assumes that “consumption 
per deer” does not exceed the “NORMAL CONSUMPTION PER DEER.” 
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Another reference point is the point (0,0), indicating that when all “Vegetation” has been 
depleted, the “Deer” cannot consume anything, so “consumption per deer” must be 0. 

An alternative assumption about the “effect of vegetation on consumption per deer” is 
that the relationship is linear: 

linear consumption lookup 
consumption lookup 

-X

A linear shape of the table function would mean that the ability of the “Deer” to find and 
consume “Vegetation” depends linearly on the existing level of “Vegetation,” which is 
probably not a realistic assumption. With a linear “effect of vegetation on consumption 
per deer,” “consumption per deer” starts decreasing earlier and faster than in the base run 
after “Vegetation” falls below its normal value.  The total amount of “consumption” 
every year therefore also starts declining earlier and more slowly, so “Vegetation” also 
decreases more slowly. Hence, the “Deer” population peaks at a higher value, and its 
collapse occurs later, as shown in the following figures: 

1 

0.75 

0.5 

0.25 

0 
0 0.25 0.5 0.75 1 
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Deer - linear consumption effect

12,000 

9,000 

6,000 

3,000 

0 
0  5  10  15  20 

Years 

Deer : deer deer

Deer : linear consumption lookup deer


Vegetation - linear consumption effect 
20,000 

15,000 

10,000 

5,000 

0 
0  5  10  15  20 

Years 

Vegetation : deer unit of vegetation 
Vegetation : linear consumption lookup unit of vegetation 
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As one can see from the above graphs, the assumption of a linear relationship between 
the amount of “Vegetation” and the “consumption per deer” does not have significant 
effects on the model behavior. 

Another assumption about the “effect of vegetation on consumption per deer” is that the 
curve becomes steeper for higher value of the ratio of “Vegetation” to “NORMAL 
AMOUNT OF VEGETATION.”  Such a shape, however, is unrealistic: it does not seem 
likely that a change in “Vegetation” when it is close to its normal value would have an 
equal or stronger effect than when “Vegetation” is very scarce. 

One can also assume that the relationship between “Vegetation” and “consumption per 
deer” is an S-shaped curve: 

s-shaped consumption lookup 
consumption lookup 

-X-

The S-shaped curve corresponds to the assumption that the central region of possible 
values of “Vegetation” is more sensitive to small changes than the extreme regions.  The 
flat part of the curve in the region where “Vegetation” is close to “NORMAL AMOUNT 
OF VEGETATION” can be explained by the same reasoning as the table function from 
the base run. When “Vegetation” is close to “NORMAL AMOUNT OF 
VEGETATION,” small changes in “Vegetation” do not have a strong effect on 
“consumption per deer.”  When “Vegetation” becomes more scarce, as in the middle 
region, however, even a small change in “Vegetation” has a strong impact on the ability 
of “Deer” to find and consume “Vegetation,” so the curve is decreasing steeply.  There 
may, however, be a threshold value of “Vegetation” below which consumption is almost 
impossible. Hence, when “Vegetation” approaches such a threshold value, “consumption 
per deer” is almost non-existent, and a further reduction of “Vegetation” cannot make 
“consumption per deer” much lower. 

With an S-shaped “effect of vegetation on consumption per deer” table function, the 
multiplier becomes close to zero earlier, so “consumption per deer” decreases faster and 
earlier, which slows down the decline of “Vegetation.”  As a result, the population of 
“Deer” can grow for a longer time and to a higher value. Because “consumption per 
deer” becomes close to zero before all “Vegetation” is depleted, the S-shaped table 

Page 17 



D-5011-1


function results in positive values of “Vegetation” and “Deer” after the collapse of the 
“Deer” population, as shown in the following figures: 

Deer - S-shaped consumption effect 
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Vegetation - S-shaped consumption effect 
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Again, as one can see from the above graphs, the assumption of an S-shaped relationship 
between the amount of “Vegetation” and the “consumption per deer” does not affect the 
overall behavior of overshoot and collapse generated by this model. The true table 
function depends on the deer and type of vegetation. Data collection and research would 
be required to accurately draw the table function. 

D. Repeat part C for the table function corresponding to the “effect of resource on loss 
fraction” table function from the generic structure. 

The table function corresponding to the ”effect of resource on loss fraction” is the “effect 
of vegetation on death fraction”: 

deer 
death fraction lookup 

-X-

The slope of the table function is negative for all values of the ratio of “Vegetation” to 
“NORMAL AMOUNT OF VEGETATION,” indicating that the lower the amount of 
“Vegetation,” the higher the “death fraction.” 

The curve is becoming steeper for lower values of “Vegetation,” which indicates that the 
effect of “Vegetation” on the “death fraction” becomes stronger as the amount of 
“Vegetation” decreases.  The modeler assumes that when the amount of “Vegetation” is 
close to the “NORMAL AMOUNT OF VEGETATION,” the life span deer is not greatly 
affected, so their “death fraction” is close to the “NORMAL DEATH FRACTION.”  If 
“Vegetation” is very scarce, however, the life span of “Deer” decreases quickly even for 
small changes in “Vegetation,” and the “death fraction” increases. 

A reference point of the table function is the point (1,1), indicating that when 
“Vegetation” equals the “NORMAL AMOUNT OF VEGETATION,” the “death 
fraction” also equals the “NORMAL DEATH FRACTION.”  Also, if “Vegetation” 
exceeds the “NORMAL AMOUNT OF VEGETATION,” the modeler assumes that 
“death fraction” does not fall below the “NORMAL DEATH FRACTION.” 
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Another reference point is the point (0,10), indicating that when all “Vegetation” has 
been depleted, the “death fraction” becomes ten times its normal value.  Unlike in the 
“effect of vegetation on consumption per deer” table function, the “effect of vegetation 
on death fraction” table function has a reference point that is crucially dependent on the 
modeler’s knowledge of the life span of deer when “Vegetation” is almost exhausted. 
Clearly, the “death fraction” should be higher than the “BIRTH FRACTION,” but the 
exact value of the maximum “death fraction” is not necessarily obvious.  As was shown 
in part B. of Exercise 2, we know that the maximum value of the “effect of vegetation on 
death fraction” must be higher than 5; otherwise, the model generates unrealistic 
behaviors. The maximum point of the table function should be determined by finding the 
life span of deer in the absence of any vegetation. 

One can therefore test the sensitivity of the model to alternative assumptions about the 
maximum value of the “effect of vegetation on death fraction.”  If the maximum value is 
lower (but still higher than 5), the population of “Deer” decreases more slowly because, 
when the “death fraction” surpasses the “BIRTH FRACTION,” the negative net flow into 
the stock of “Deer” has a lower magnitude.  Similarly, if the maximum value is higher, 
the “Deer” population collapses more quickly because the net flow has a higher 
magnitude. The overall behavior of overshoot and collapse, however, is unaffected by 
such changes. These results are shown in the following figure, comparing the base run 
(deer simulation run) to a simulation with the maximum value of “effect of vegetation on 
death fraction” at (0,7) (lower death fraction lookup simulation run) and at (0,15) (high 
death fraction lookup simulation run): 

Deer - changing death fraction lookup 
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E. Summarize your findings from parts C and D.  What would you conclude about the 
sensitivity of model behavior to changes in table functions? 

The effect of changes of table functions on model behavior is limited as long as the slope 
of the curve is unchanged. Changing the shape of the curve, as shown in part C., may 
have some effects on the time scale and magnitude of the behavior, but the overall pattern 
of behavior is unaffected. 
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