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Guided Study Program in System Dynamics 
System Dynamics in Education Project


System Dynamics Group

MIT Sloan School of Management1


Solutions to Assignment #5 
October 27, 1998 

Reading Assignment: 

Please read the following: 
•	 Principles of Systems,2 by Jay W. Forrester, Sections 2.1, 2.2, 2.4 

Then refer to Road Maps 3: A Guide to Learning System Dynamics (D-4503-4) and read 
the following papers from Road Maps 3: 

•	 Graphical Integration Exercises Part 2: Ramp Functions (D-4571) 
•	 Beginner Modeling Exercises Section 2: Mental Simulation of Positive Feedback (D

4487) 
•	 Beginner Modeling Exercises Section 3: Mental Simulation of Negative Feedback 

(D-4536) 

Exercises: 

1.	 Principles of Systems 

Please read sections 2.1, 2.2, and 2.4 in Principles of Systems (we will return to sections 
2.3 and 2.5 in later assignments) and do the workbook exercises for these sections 
(located at the end of the book). You should understand all the material in these 
sections; please let us know if you have any questions. You do not need to submit 
anything for this reading assignment. 

2.	 Graphical Integration Exercises Part 2: Ramp Functions 

A. Using the skills you acquired in Graphical Integration Exercises Part Two, 
graphically integrate the following flows. Use a graphics application to create the 

1 Copyright © 1998 by the Massachusetts Institute of Technology. Permission granted to distribute for

non-commercial educational purposes.

2 Forrester, Jay W., 1968. Principles of Systems, (2nd ed.). Portland, Oregon: Productivity Press. 391 pp.
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graphs of the stock behaviors, and then paste the graphs into your assignment solutions 
document. 

1. Assume that the initial value of the stock is –50. 

1: flow 
1: 10.00 

1: 0.00 

1: -10.00 

1 

1 

1 

1 

0.00 5.00 10.00 15.00 20.00 

Time 

At time =0, the flow is at 0. From time = 0 to time = 5, the flow increases linearly with 
slope +2. From time = 5 to time = 15, the flow remains positive but decreases linearly 
with slope –1. The flow then steps up to +5 at time = 15 and remains constant at +5 
until time = 20. 

The initial value of the stock is –50, and the flow starts at 0. 

From time = 0 to time = 5, the flow increases linearly with slope +2. The change in the 
value of the stock, which equals the area under the graph of the flow, is 5 * 10 / 2 = 25 
units of stock. The value of the stock therefore increases by 25 units, to –25. Because 
the value of the flow increases during this time segment, the slope of the graph of the 
stock also increases, so the stock exhibits parabolic growth. 

From time = 5 to time = 15, the flow remains positive but decreases linearly with slope 
–1. The change in the value of the stock, which equals the area under the flow graph, is 
(15 – 5) * 10 / 2 = 50 units of stock. The value of the stock thus increases by 50 units 
(remember that the flow is positive, so the stock must increase), from –25 to 25 units. 
Because the value of the flow decreases during this time segment, the slope of the graph 
of the stock also decreases, so the stock exhibits “decreasing” parabolic growth. 

The flow then steps up to 5 at time = 15 and remains constant at 5 until time = 20. The 
change in the value of the stock, which equals the area under the flow graph, is (20 – 15) 
* 5 = 25 units of stock. The value of the stock increases by 25 units, from 25 to 50 units. 
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Because the flow is constant (its value does not change) during this time segment, the

slope of the graph of the stock also remains constant, so the stock grows linearly.


The stock behavior corresponding to the above description is shown below:


1: Stock 
50.00 

0.00 

-50.00 

1 

1 

1 

1 
0.00	 5.00 10.00 15.00 20.00 

Time 

2. Assume that the initial value of the stock is 100. 

1: flow 
1: 20.00 

1: 0.00 

1: -20.00 

1 

1 1 

1 

0.00 5.00 10.00 15.00 20.00 

Time 

The flow again starts at 0. From time = 0 to time = 5, the flow decreases linearly with 
slope –4. From time = 5 to time = 15, the flow remains negative but increases linearly 
with slope +2. At time = 15, the flow steps down to –10 and remains constant at –10 
until time = 20. 

The initial value of the stock is 100, and the flow starts at 0. 
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From time = 0 to time = 5, the flow decreases linearly with slope –4. The change in the 
value of the stock, which equals the area between the graph of the flow and the zero flow 
line, is 5 * (–20) / 2 = –50 units of stock. The value of the stock thus decreases by 50 
units, to 50 units. Because the absolute value of the flow (also called its magnitude, or its 
distance from zero) increases during this time segment, the absolute value of the slope of 
the stock graph also increases. Hence, the stock decreases more and more rapidly—  the 
stock exhibits “decreasing” parabolic behavior. 

From time = 5 to time =15, the flow remains negative but increases linearly with slope 
+2. The change in the value of the stock, which equals the area between the flow graph 
and the zero flow line, is (15 – 5) * (–20) / 2 = –100 units of stock. The value of the 
stock therefore decreases by 100 units, from 50 to –50 units. Because the absolute value 
of the flow decreases during this time segment, the absolute value of the slope of the 
stock graph also decreases. Hence, the stock decreases less and less rapidly—  the stock 
exhibits parabolic behavior. 

At time = 15, the flow steps down to –10 and remains constant at –10 until time = 20. 
The change in the value of the stock, which equals the area between the flow graph and 
the zero flow line, is (20 – 15) * (–10) = –50 units of stock. The value of the stock thus 
decreases by 50 units, to –100 units. Because the flow is constant (its value does not 
change) during this time segment, the slope of the stock also remains constant, and the 
stock decreases linearly. 

Notice that the flow in part 2 is equal to –2 times the flow in part 1, and the initial value 
of the stock in part 2 is also equal to –2 times the initial value of the stock in part 1. The 
behavior of the stock in part 2 could thus simply be obtained by “reversing” the behavior 
of the stock in part 1 and “stretching” the graph by a factor of 2. 

The stock behavior corresponding to the above description is shown below: 
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1: Stock 

1 

1 

1

1100.00 

0.00 

-100.00 
0.00 5.00 10.00 15.00 20.00 

Time 

B. Although graphical integration may just seem as a useless exercise in arithmetic, an 
intuitive understanding of the process is often useful when trying to understand the 
behavior of a system. Using the insights from the two Graphical Integration Exercises 
papers that you have read so far, fill in the following table by trying to generalize what 
type of stock behavior results from various types of flow behaviors. 

The table should be filled in as follows. For negative flows, it is important to define what 
we mean by “increasing” and “decreasing”— is it the actual value of the flow that 
increases or decreases, or is it the absolute value (the magnitude, or distance from zero)? 
In the table below, a negative flow that is “increasing” (“decreasing”) is defined as a 
negative flow whose absolute value increases (decreases). Thus, for example, a flow that 
goes changes from –2 to –4 is negative and increasing. Note that for positive flows, the 
actual value and the absolute value are equal. 

Sign of Flow Value of Flow Stock Behavior 

zero flow zero not changing 

positive constant increasing linearly 

increasing increasing more and more rapidly 

decreasing increasing less and less rapidly 

negative constant decreasing linearly 

increasing decreasing more and more rapidly 

decreasing decreasing less and less rapidly 

Several of you stated in your responses that when flows are increasing or decreasing, the 
stocks undergo “parabolic” or “exponential” increasing/decreasing growth/decay.  From 

Page 5 



D-4717-1 

the information given, however, it is impossible to distinguish whether the behavior of 
the stock will be parabolic or exponential. If the flow is a function linearly increasing in 
time, then the flow will be changing more and more rapidly in a parabolic manner. If the 
flow is part of a feedback loop, then as the flow increases, the stock will change more and 
more rapidly in an exponential manner. Whether the behavior is parabolic or exponential 
depends on whether the flow is driven exogenously or endogenously via a feedback loop. 
Furthermore, the flow may be neither exponential nor linear. In such a case, the stock 
behavior may be parabolic-like, but not parabolic. Keep in mind that exponential and 
parabolic behaviors have precise mathematical formulas. Hence the terms should not be 
used to describe patters that merely look exponential or parabolic. 

How does the sign of the flow determine the stock behavior? How about the value of the 
flow? What is the role of the initial value of the stock? 

The sign of the flow determines whether the stock is increasing (if the flow is positive) or 
decreasing (if the flow is negative). 

The value of the flow determines how fast the stock changes. If the absolute value of the 
flow increases, the stock changes more and more rapidly. If the absolute value of the 
flow decreases, the stock changes less and less rapidly. Note that the above statements 
are true for any kind of flow, not just linear flows. 

In simple systems such as the ones studied in this exercise, the initial value of the stock 
has no role in determining the behavior of the stock. The initial value is, however, 
essential in determining the value of the stock at any time. 

3. Beginner Modeling Exercises Section 2: Mental Simulation of Positive Feedback 

A. As required in the Exploration exercise #1, give three simple examples of positive 
feedback systems (please try to think of systems that have not been mentioned in the 
readings so far). For each example, provide a short verbal description (one or two 
sentences) of the positive feedback loop. 

Weeds in your yard: The more weeds there are the more they propagate, and then there 
are more weeds to propagate. 

My husband asked me years ago how many daffodils I wanted in the front yard—  I 
replied, “A host.”  He initially planted 25 bulbs, but every other year he dug them up and 
found that on average each bulb had split into three viable bulbs. In a very few years, I 
had my host of golden daffodils. 

The importance of the English language as the international language: the more people 
who learn English, the more it is used for international communications by scientists, 
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businessmen, etc., the more important English becomes, and the more people interested 
in learning English. 

Teenage fads spread through positive feedback. When one teenager decides to try 
something new (like nose piercing), his friends may follow suit, then their friends do so. 
As the system loops and loops—  the craze sweeps the country. 

Children in a school with chicken pox: The stock of children with the disease increases 
as more and more contract chicken pox. The larger the population of children with the 
disease, the more children they will infect, the larger the chicken pox population. 

Corruption breeds corruption: If one government official engages in corrupt practices 
then others will not be afraid to do the same. The more corrupt examples there are, the 
more people engage in the practice. The stock is the number of corrupt officials, the 
growth factor would be “corruption pollutant factor,” which is the effect that each corrupt 
official has on causing others to become corrupt. The flow is the number of newly 
corrupt officials added. 

B. Pick one of the systems you described in part A. and build a model of the system using 
Vensim PLE. Choose the initial value of the stock and the value of the growth fraction, 
formulate the equations for the model, and simulate the model. What type of behavior 
does the model generate? In your assignment solutions document, please include the 
model diagram, documented equations, and a graph of the model behavior. 

Weeds in a garden: 

Model diagram: 

Weeds in 
Gardenpropagation 

PROPAGATION 
FRACTION 

Model equations: 

propagation = Weeds in Garden * PROPAGATION FRACTION 
Units: weed/week 
The number of weeds growing each week is equal to the number of weeds in the 
garden multiplied by the propagation fraction. 
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PROPAGATION FRACTION = 0.1 
Units: 1/week 
The fraction of a weed that each existing weed produces per week. 

Weeds in Garden = INTEG (propagation, 10) 
Units: weed 
The number of weeds in the garden. 

Model behavior: 

As expected, the model generates exponential growth of the number of weeds in a 
garden: 

Weeds in Garden 
2,000 

1,000 

0 
0  10  20  30

Weeks 
40  50 

Weeds in Garden : weeds weed 

Corruption of officials: 

Model diagram: 
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Corrupt 
Officialscorrupting 

CORRUPTION 
POLLUTANT FACTOR 

Model equations: 

Corrupt Officials = INTEG (corrupting, 5) 
Units: official 
The number of corrupt officials. 

corrupting = Corrupt Officials / CORRUPTION TIME 
Units: official/Month 
The number of officials who become corrupt each month. 

CORRUPTION TIME = 8 
Units: Month 
The time it takes an already corrupt official to corrupt one of his colleagues. 

Model behavior: 

The model generates exponential growth of the number of corrupt officials: 
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Corrupt Officials


100 

50 

0 
0  6  12  18  24 

Months 

Corrupt Officials : corrupt official 

C. What is the doubling time of the system? Explain intuitively the difference between 
the growth fraction and the doubling time of a system. Feel free to support your answer 
by deriving an equation, but we are looking for a verbal explanation here. 

The doubling time of the system is 0.7/growth fraction. 

It is important to realize that the doubling time and the growth fraction of a positive 
feedback system are not equal. The doubling time is the time it takes for the value of the 
stock to double. The growth fraction is the fraction of the stock that is added to the stock 
in each time period. Another way to think about the growth fraction is to convert it into 
its inverse, the time constant: time constant = 1/growth fraction. The time constant is the 
time it takes for each initial unit of the stock to compound into a new unit. The formula 
for doubling time can then be written as: 

doubling time = 0.7 * time constant 

All these concepts will be explained and reviewed several more times in later chapters of 
Road Maps. 

D. Can a positive feedback system be in equilibrium?  Why or why not? If yes, describe 
the various situations that might lead to equilibrium. 
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A simple positive-feedback loop can exhibit unstable equilibrium if the initial value of 
the stock is 0. The equilibrium is called unstable because even a small disturbance in the 
initial value of the stock will destroy the equilibrium and result in exponential growth. 
Once exponential growth takes off, the system cannot return to equilibrium. 

E. As mentioned in Beginner Modeling Exercises Section 2, growth of a positive 
feedback system cannot continue forever. Describe some factors that might limit the 
growth of the system you modeled in part B. 

Weeds in Garden: Overcrowding of the weeds will eventually reduce the propagation 
fraction. Exogenous inputs like application of herbicides or actual physical removal of 
weeds could reduce the stock. Other exogenous inputs such as rainfall amounts or 
temperature could effect the germination fraction. 

Corruption of officials: The system of corrupt officials certainly has limits and would not 
grow exponentially forever. First, the total number of officials is limited so only that 
fixed number could become corrupt. Also, the likelihood of a corrupt official 
encountering a non-corrupt official will decrease as more officials are already corrupt. 
This would gradually decrease the growth fraction, which would gradually approach 
zero. It is conceivable that some officials are not corruptible. 

4. Beginner Modeling Exercises Section 3: Mental Simulation of Negative Feedback 

A. As required in the Exploration exercise #1, give three simple examples of negative 
feedback systems of the same type as the rainfall system (please try to think of systems 
that have not been mentioned in the readings so far). For each example, provide a short 
description (one or two sentences) of the negative feedback loop. Then give three 
examples of negative feedback systems of the same type as the solvent absorption system, 
and, in one or two sentences, describe the negative feedback loop for each of them. What 
are the differences and similarities between the two types of negative feedback systems? 

When I start eating and am very hungry, I tend to eat quickly and larger quantities. As 
my stomach fills up, the size and frequency of my bites both diminish. Once there is 
“zero” room remaining in my stomach, I have no desire to continue eating. 

A friend of mine is studying for the GMAT exam. Forty areas of math review require her 
attention. In the early stages of her preparation, she focused on the areas she knew best, 
reviewing material rapidly while covering lots of ground. As the review process moves 
along, she finds herself working on smaller and smaller components of the material. 
Once she’s covered forty areas, the review process will end. 
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Using a dustpan can function as a negative feedback system. On my first pass using the 
dustpan, I get around 80% of the dust on the floor. On each subsequent pass, I tend to get 
80% of what remains from the prior pass. 

A cake in the oven behaves as the solvent absorption system. A cake has to rise to a 
certain height. At the beginning, it rises very quickly, but the last stretch takes a long time 
to complete. 

When you are trying to prepare a list of items (let’s say, find six examples of negative 
feedback systems) the first ones always come to mind very quickly, and the last ones take 
a very, very long time. As you complete the list, the thinking period becomes longer. 

Filling your gas tank: When you first start filling the gas tank on your car you will hold 
the nozzle wide open. As the tank approaches full, you start to back off on the handle to 
slow the flow. As you approach the full mark, you are slowing to almost no flow. 

The two types of systems are essentially the same. Both exhibit “goal-seeking” behavior 
characteristic of negative-feedback loops. In the rainfall system, the implicit goal of the 
“dry surface area” stock is zero, while in the solvent absorption system, the goal is 
modeled explicitly as the “max height.”  To determine whether a negative feedback loop 
will generate growth or decay, just compare the initial value of the stock and the goal 
value. If the initial value is higher than the goal, the stock will decrease towards the goal. 
If the initial value is lower than the goal, the stock will increase towards the goal. The 
goal-seeking behavior is asymptotic—  each stock approaches its goal value, fast at first 
and then more and more slowly as time passes. 

B. For each of the two types of negative feedback systems, do the following:  pick one of 
the systems you described in part A. and build a model of the system using Vensim PLE. 
Choose the initial value of the stock and the values of any other parameters in the model, 
formulate the equations for the model, and simulate the model. What type of behavior 
does the model generate? Compare the behaviors generated by the two models. In your 
assignment solutions document, please include the model diagram, documented 
equations, and a graph of the model behavior for both models. 

Eating until stomach is full: 

Model diagram: 
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Stomach 
Capacity eating 

SATIATION 
FACTOR 

Model equations: 

eating = Stomach Capacity * SATIATION FACTOR 
Units: space/Minute 
The rate at which I fill my stomach by eating more food is influenced by how 
much room remains in my stomach as well as the satiation factor. 

SATIATION FACTOR = 0.2 
Units: 1/Minute 
The satiation factor measures the rate at which my stomach capacity diminishes 
because of eating. 

Stomach Capacity = INTEG (-eating, 1) 
Units: space 
The remaining capacity in the stomach. 

Model behavior: 

The model generates asymptotic approach of “Stomach Capacity” towards zero. 
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Stomach Capacity


1 

0.5 

0 
0  5  10

Minutes 

Stomach Capacity : stomach 

15  20 

space 

Baking a cake: 

Model diagram: 

Cake Height 
rising rate 

MAXIMUM 
HEIGHT 

height gapRISING 
FRACTION 

Model equations: 

Cake Height = INTEG (rising rate, 8) 
Units: centimeter 
The current height of the cake. 

height gap = MAXIMUM HEIGHT - Cake Height 
Units: centimeter 
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The difference between the cake’s maximum height and its current height. 

MAXIMUM HEIGHT = 22 
Units: centimeter 
The height of the cake when it is completely baked. 

RISING FRACTION = 0.05 
Units: 1/Minute 
The fraction by which the cake rises every minute. 

rising rate = height gap * RISING FRACTION 
Units: centimeter/Minute 
The rate at which the cake rises. 

Model behavior: 

As expected, the model generates asymptotic behavior, with the “Cake Height” 
approaching the goal of “MAXIMUM HEIGHT”: 

Cake Height 
40 

0  30  60  90 
Minutes 

Cake Height : cake centimeter 

C. Calculate the half-lives for both systems.  Explain intuitively the difference between 
the decay or growth fraction and the half-life of a system. Feel free to support your 
answer by deriving an equation, but we are again looking for a verbal explanation here. 

20 

0 
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The half-life for a first-order negative-feedback system equals 0.7/decay (or growth) 
fraction of the system. 

Again, it is important to realize that the half-life and the decay or growth fraction of a 
negative-feedback system are not equal. The half-life is the time it takes for the stock to 
close one half of the gap between the value of the stock and the goal value (the goal in 
the rainfall-type model is 0). 
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